
C 1 Amphiphilic Systems

H. Frielinghaus
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1 Introduction

In today’s life the best known examples for amphiphilic molecules are soap and detergents.

These agents lower the surface tension of water, which allows for wetting almost any surface.

Furthermore, oily substances can be taken up in solution. In both cases, the surfactant is active

at the surface. The hydrophilic head group points towards the water while the hydrophobic tail

points towards the dissolved oil droplet or the non-polar surface. In this sense, the surfactant

is an amphiphile, which mediates between polar solvents and non-polar solutes or surfaces.

This property is highly interesting for many nowadays industrial products. For food, cosmetic

and pharmaceutic products oily substances are to be taken up in aqueous solution. One might

think of salad dressings or low fat margarines, lotions and creams. Pharmaceutical agents are

often non-polar and need to be in aqueous solution for the ingestion. Most of these industrial

products are emulsions. By mechanical mixing and amphiphilic stabilization the non-polar

substances are kept in aqueous solution for long times. This finite stability leads to finite best-

before-dates, but the amphiphile concentration can be kept low. In fundamental research one

often prefers microemulsions with higher surfactant concentrations and thermodynamic (i.e.

infinite) stability. Then, the system is always well defined and does not depend on the history

of preparation.

The property of amphiphiles to orient themselves towards the non-polar and polar regions is

called self-assembly. This effect holds for surfactants, which usually appear with molar masses

of several hundred Daltons. But also long chain molecules can be amphiphilic. The easiest

case is a symmetric linear chain with one end being hydrophilic and the other hydrophobic,

a symmetric amphiphilic block copolymer. Such polymers proved to be efficiency boosters

in microemulsions. This molecule allows for dissolving oil in water with much less surfactant.

The polymer ends are dissolved in the oil and water domains and form coils on either side of the

membrane. The coils exert some force on the surfactant membrane, which leads to flattening.

This allows for the formation of larger oil and water domains with a better surface to volume

ratio and so surfactant can be saved. This polymer example shows that self-assembly is not

limited to small molecules. The effective interaction of the polymer is larger due to its length,

and so the difference between hydrophobic and hydrophilic can be relaxed for the self-assembly

effect. So small miscibility differences of polymers might still result in ordered structures. Most

structures of amphiphiles (surfactants and polymers) are of the nanometer scale. This length

scale is accessed by electron microscopy and by (neutron and x-ray) scattering experiments.

The structural information in combination with theories leads to the fundamental understanding

of the mechanisms. Only with this knowledge, modern products can be developed because

the systems are getting more and more complex with more and more substances. Amphiphilic

polymers are the key substance for emulsification problems in the future.

2 Aqueous Surfactant Solutions

Surfactants can be divided into two major classes: Ionic surfactants possess a ionic head group

with a counterion while non-ionic surfactants have no charges. In the first case, the ionic head

group is soluble in water, and the counterion dissociates. One for research important surfactant

is the sodium dodecyl sulfate (SDS, see Fig. 1). The SDS is an anionic surfactant because the

sulfate head group is an anion. The tail of the SDS molecule is a hydrocarbon, which is typical

for most of the surfactants. A representative for the non-ionic surfactants is tetraethyleneglycol-
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Fig. 1: Top: Conceptual drawing of a surfactant molecule. The hydrophilic head is blue while

the hydrophobic tail is red. Middle: Chemical structure of sodium dodecyl sulfate (SDS). The

head and tail groups are just below the conceptual drawing. Bottom: Chemical structure of

tetraethyleneglycolmonodecylether (C10E4). The head group is four glycol groups long.

monodecylether (C10E4, the indices count the carbon atoms and ethylene oxide groups, see Fig.

1). The head group is not charged; but the oxygen atoms along the head group give rise to hydro-

gen bonding, which is favorable for the water solubility. For this type of surfactant the molecule

ends can vary in length, but also in chemical structure. For instance the hydrophobic tails can

possess different amounts of saturated carbon-carbon bonds. This is important for lipids, which

are natural ionic surfactants forming cell membranes. Lipids often have two hydrophobic tails.

The number of double-bonds in the tails determines the thermodynamic state of the membrane.

Many unsaturated tails give rise to crystalline order of the hydrophobic tails [11]. Apart from

the tails, the head groups may possess two oppositely charged groups; then the surfactant is

called amphoteric. The whole concept of hydrophilic and hydrophobic can be extended by a

third type of philicity: The polymer Teflon (fluorinated carbon chains) is known to be neither

water soluble nor oil soluble. If fluorinated carbon chains are used as hydrophobic tails a new

class of surfactants is obtained1. Throughout this manuscript we limit ourselves to the sim-

ple twofold concept of hydrophilicity and lipophilicity. The interested reader may find further

information about fluorinated surfactants in the literature [1].

We now consider aqueous solutions of a single surfactant type. It is known that at very low

concentrations the surfactant molecules are dissolved independently. The reason for this behav-

ior is the entropy, which favors dissociated molecules. But because the hydrophobic tail causes

some enthalpic violation, at the critical micelle concentration (CMC) the surfactant molecules

associate and form small spherical micelles. The hydrophobic tails are in the center and the

hydrophilic heads surround the micelle. The hydrophobic neighborhood of the hydrocarbon

chains can be monitored by NMR [2] and so very precise values for the CMC can be given. The

effect of the CMC is a volume effect and is thus determined for large volumes. At the surface,

the surfactant molecules can also be found. These studies focus on Langmuir-Blodgett films for

instance, but this topic will lead too far.

The next question focuses on the state or structure of the micelles in solution. Different struc-

tures can be classified and shall be explained on the basis of a simple model, which mainly

focuses on ionic surfactants. The parameter of interest is the packing parameter [3], which is

1Fluorinated surfactants allow for CO2 to be used as hydrophobic component in microemulsions for instance.
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Table 1: The different micellar structures predicted on the basis of the packing parameter.

P molecule geometry micelle structure symmetry

< 1
3

cone sphere point-like
1
3

to 1
2

wedge cylinder cylinder
1
2

to 1 wedge vesicle (double layer) point-like

1 cylinder planar double layer plane-like

Fig. 2: Molecule geometries for different packing parameters.

defined as follows:

P =
v

a · l (1)

In this equation the parameter v is the volume of the whole molecule, a is the area of the head

group, and l is the length of the chain. This packing parameter can vary between values below 1
3

and 1 (see Table 1). For values below 1
3

the micelles are spherical, then for P up to 1
2

the micelles

are elongated cylinders. For P up to 1 the micelles form closed double layers, i.e. spherical

hollow membranes; they are called vesicles. For P = 1 the membranes become planar. It

shall be mentioned that this effect is called self-assembly already. The formed structures have a

high degree of symmetry. Only fluctuations might destroy the high degree of symmetry. So for

instance very long cylindrical micelles start to bend and a worm-like micelle is formed [4]. For

the purpose of this lecture we restrict the considerations of P to a maximum of 1.

An experimental phase diagram is depicted in Fig. 3. We first restrict ourselves to the temper-

ature of 20◦C (see Fig. 3). The CMC is found at concentrations of around 0.005%. At higher

concentrations up to ca. 1% spherical micelles are found. In between 1 and 10% the micelles

become cylindrical. Going up in temperature now, their length grows until the phase boundary

at ∼33◦C is reached. A clear line between spherical and cylindrical micelles is not given in the

phase diagram because the phase transition smears out, and usually a coexistence between the

two morphologies is found. The long micelles are usually wormlike because of the fluctuations.

At higher concentrations the worms can even form networks. All these effects take place in the

one-phase region (1Φ or L1). The temperature has an effect on the micelle shape because at

lower temperatures water penetrates the head group of the non-ionic surfactant.

So far we did not consider the case, that the micelles can be reversed. At low water concentra-

tions (or high surfactant concentrations) the water and hydrophilic heads form a closed volume

surrounded by the hydrophobic parts. The corresponding region is indicated by L2 or 1Φ. The

interesting case of the L3-phase is found at slightly higher temperatures. Then the membranes

fill the whole volume with a sponge like structure. The membranes are strongly fluctuating.

The more planar membranes are found in the Lα-phase at relatively high concentrations. These
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Fig. 3: An experimental phase diagram of the non-ionic surfactant C12E5 in water [5, 6]. Fol-

lowing a horizontal line at ca. 20◦C from low to higher concentrations one finds the CMC at

around 0.005% and the one-phase (1Φ) region. Below ∼1% the micelles are spherical and

uncorrelated. Between 1 and 10% the micelles become cylindrical. Their length increases with

temperature until the phase boundary at around 33◦C is reached. Interestingly, more phases

are found than predicted by the simple packing parameter approach. 2-phase coexistence is

indicated by 2Φ. The hexagonal phase is indicated by H1 and the lamellar phase by Lα. The

L3-phase is the sponge phase. To the right the same diagram is shown on linear scale and more

schematically [5]. The abbreviations for the different phases are discussed in the text below

(see also Table 2).

lamellae are relatively well ordered due to steric interactions. Steric interactions are typical for

non-ionic surfactants, which do not possess a Coulomb interaction. For ionic surfactants the

lamellar phase is formed at lower concentrations due to the strong interaction. Astonishingly,

more ordered phases appear. The H1-phase contains cylindrical micelles (as the L1-phase),

but the cylinders are ordered on a hexagonal lattice. Again, the steric repulsion is sufficient to

order the micelles in a liquid crystalline state. The V1-phase has a cubic unit cell, while the

hydrophilic and hydrophobic domains are continuous in the whole volume. This phase is also

called ‘plumbers nightmare’ because the high viscosity might result in plugging of tubes. The

exact structure will be discussed in the text below. We see that liquid crystalline phases (Lα,

H1, V1) exist with liquid crystalline order. These phases are also termed lyotropic because the

addition of water is responsible for the formation. So this term arises from the viewpoint of the

solid phase S, which means mainly a pure surfactant with small impurities of water.

In Fig. 3 there are also two-phase regions marked. In this region two phases coexist, so either

the sample gets turbid because of many small domains or, after a long time, the sample forms

a meniscus between the two clear phases. The horizontal lines indicate the corresponding co-

existing phases, so from a given overall concentration one follows the tie-lines to the right and

left, and reads off the properties of the coexisting phases. The lines are horizontal, because the

vertical axis is the temperature. For more complicated phase diagrams (we shall see later) the

tie lines can be tilted. The example L3 +W or L1 + L3 indicates a coexistence of the sponge

phase L3 with a highly water rich phase. The example L′

1 + L′′

2 or 2Φ indicates two coexist-
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Fig. 4: Left: A scheme how to read off the compositions from the Gibbs Phase Triangle. The

axis to the left of the corresponding component in the corner shows the scale of the fraction.

The colored lines indicate constant composition. The whole diagram is completely symmetric.

Right: A rather simple phase diagram for the system: H2O, n-octane, C10E4 [7]. The numbers

inside indicate the number of phases, and Lα indicates the lamellar phase.

ing micellar phases. One of them contains spherical and the other one cylindrical or wormlike

micelles.

In summary for the aqueous surfactant systems the following points shall be clear. The CMC

separates the highly diluted from the diluted region. The entropy favors unimeric surfactant

molecules while the enthalpy favors micelles. The concept of packing explains the micellar

shapes. These shapes have a high degree of symmetry, because each surfactant molecule is

identical. The shapes range from spherical over cylindrical to lamellar. At higher concen-

trations, the interactions between the micelles lead to lyotropic (or liquid crystalline) phases.

There exist phases with the same micellar shapes of the diluted region, but also ordered phases

with new unit cells (see V1). The interactions are sterically repulsive for non-ionic surfactants

and Coulomb-like for ionic surfactants. Theoretical concepts of the interactions will be given in

the following chapter. The parameter temperature comes into play here because enthalpic and

entropic contributions are weighted differently.

3 Microemulsions

So far we have been focusing on two-phase systems. For cleaning processes the uptake of oil

is an important issue. Then microemulsions will be formed. It is known that on a microscopic

level there are domains of (nearly) pure water and oil, and the surfactant is at the interface.

In this sense, the surfactant mediates between the hydrophilic and hydrophobic components,

which leads to macroscopically homogenous fluids. Thus, microemulsions are mostly optically

clear, which is one criterion for phase diagram measurements.

A rather simple phase diagram is shown in Fig. 4. There are now one-phase, two-phase, and

three-phase coexistence regions, since now three components are used. The most interesting

region is the small one-phase region almost in the center of the phase triangle. Here the bi-

continuous microemulsion is found. The components oil and water both form a sponge-like

structure, i.e. each of the sponge hosts the other one. In this sense the phase is bi-continuous
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Fig. 5: Left: A transmission electron micrograph of the microemulsion containing water, octane,

and C12E5. The surfactant content was 7 wt% (see Ref. [8]). The indicated bar shows a scale

of 1µm. Right: A real space picture of the bicontinuous microemulsion according to computer

simulations [9]. Actually the surfactant film is shown with the surface color being red for oil

facing surface and yellow for water facing surface.

Fig. 6: A more schematic phase triangle with most typical lyotropic phases [10]. At the bot-

tom there is the three-phase coexistence region (black) surrounded by two-phase coexistence

regions. Above there is the large L1-region with droplets, cylinders and the bicontinuous phase.

In the upper half there are many lyotropic phases such as the hexagonal H1, the cubic V1, the

lamellar Lα, and the fcc or bcc cubic I1 phase.
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(see also Fig. 5). This can for instance be proven by conductivity measurements. The grey three

phase coexistence region in the bottom of the triangle indicates a coexistence of a water-rich,

an oil-rich, and a bicontinuous phase. Here the concept of tie-lines breaks down. Contrarily, all

two-phase regions are filled with tie-lines, which are tilted now. At very low surfactant concen-

trations the droplet phase is found. This phase is nearly invisible on the current scale. A more

schematic phase diagram with lyotropic phases is depicted in Fig. 6. One important point is

the large L1 phase where droplets, cylinders, and the bicontinuous phase are included. Entropic

contributions destroy clear phase transitions between the distinct structures, and so coexistence

is possible. On the bottom right the reversed micelles are found. Another point of this scheme

is the indication the most important lyotropic phases. Their real space pictures are indicated

around the phase triangle. The structures show closed micelles with the hydrophobic compo-

nent inside. In principle, the reversed micelles are possible as well. After we have seen that

different authors use different abbreviations for the same phases a list of all possible abbrevia-

tions should be given. A first attempt was made by Tiddy [11] that we now extend for our own

purposes (see Table 2).

While the theoretical concept for aqueous surfactant systems describes the micelles as bulky

objects the most widely accepted concept for microemulsions bases on the theory of Helfrich

[13]. Here it is assumed that the surfactant forms a membrane and the free energy of the overall

system is dominated by the elastic properties of the membrane. The free energy reads then:

F =

∫

dS

(

γ +
1

2
κ(c1 + c2 − 2c0)

2 + κ̄c1c2

)

(2)

The first addend describes the surface tension of the membrane. In principle the surfactant might

vary the formed surface by different tilt angles (the molecules are not oriented perpendicular)

or by crystallization of the hydrophobic tails. For our purposes we assume a liquid membrane,

and neglect variations of the overall surface. The next summand is a product of the bending

rigidity κ and the deviation of the mean curvature 1
2
(c1 + c2) from the equilibrium curvature

c0. The curvature arises from a tangential construction at a given membrane point (see Fig. 7).

Namely, two perpendicular circles describe the tangent. Their reciprocal radius is the curvature,

i.e. ci = R−1
i . A positive curvature means a curvature towards the oil domain. The middle

summand is sensitive to deviations of the mean curvature from the equilibrium curvature. The

last addend is a product of the saddle splay modulus κ̄ and the Gaussian curvature c1c2. A

saddle shape for instance has a negative Gaussian curvature, while for a sphere the Gaussian

curvature is positive, i.e. c1c2 = R−2. One finds typical values of κ ≈ 1..10kBT and κ̄ ≈ −κ
for soft to rigid membranes. On this basis predictions for the phase behavior can be made as we

will see below.

The first problem to tackle is the L1 phase. As we have seen, there exist spherical and cylindrical

micelles. The lamellar phase Lα will be taken into account as well. The problem was treated

by Safran [14] for the first time by comparing the free energies for the three different cases.

Since the bodies were assumed to be ideally shaped the calculations were kept quite simple. He

found that the three different shapes are separated by distinct phases. The same problem was

described by Blokhuis [15] in a slightly extended way: Emulsification failure and coexistence

of the two micelle types was taken into account. The results are shown in Fig. 8. On the y-axis

the dimensionless ω/R0 is used. It bases on the ratio of the toal volume and the total membrane

area, i.e. ω = Vtot/Stot, and the equilibrium radius R0 = c−1
0 . The x-axis is spanned by the

ratio of the two moduli κ̄/κ. From small to large surfactant concentrations one passes from the

two phase coexistence (2̄ϕ) over the micellar shapes (spheres/cylinders) to the lamellar phase.
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Table 2: A survey about symbols for the different phases in aqueous surfactant systems and

microemulsions. A first attempt was introduced by Tiddy [11]. Especially more exotic examples

are given there. The second column gives symbols for polymeric systems [12], which will be

discussed in a later section.

symbol symbol alternative symbols explanation

used here (polymers)

1, 1Φ L1 or L2 micelles & fluctuating bicontinuous phase

2, 2Φ L′

1 + L′′

1, ... 2 coexisting phases (need to be specified)

2̄, 2Φ 2 coexisting phases at high/low temperatures

3, 3Φ L1 + L2 + L3, ... 3 coexisting phases (need to be specified)

L1 M1 micelles, hydrophopic part inside

L2 M2 reversed micelles, hydrophilic part inside

L3 bicontinuous phase

Lα L D, G lamellar phase, ordered

H1 H1 E, HI , M1 hexagonal phase, ordered

H2 H2 F , HII , M2 reversed hexagonal phase, ordered

I1 C1 QI , S1c cubic phasefcc,bcc with spherical micelles

I2 C2 QII cubic phasefcc,bcc with rev. spher. micelles

V1 I ′1, QI cubic phase with bicontinuous structure

V2 I ′2, QII cubic phase with rev. bicont. structure

G1 cubic gyroid phase

G2 cubic gyroid phase, reversed

Fig. 7: An example of a surface

with the two principal radii indi-

cated. This construction can be

done for any point of the surface.

Fig. 8: Microemulsion phase diagram [15].

The parameter ω/R0 is given by the ratio of the

total volume and the membrane surface and the

equilibrium curvature, i.e. ω/R0 = Vtot/Stot ·
c0. The x-axis shows the ratio of the two moduli

κ̄/κ.
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The choice of the micellar shape is driven by the ratio of κ̄/κ. This means if κ̄ is strongly

negative the spherical micelles are favored. Cylinders (with no Gaussian curvature) are favored

from slightly negative to positive κ̄-values. The theory of Blockhuis was extended to include

the translational entropy and polydispersity of the geometrical dimensions. This example shows

nicely that entropy smears out the transition between spherical and cylindrical micelles. At this

stage of the theory the micelles do not interact.

The interactions to be considered are either sterically repulsive or long ranged Coulomb inter-

actions. The treatment usually involves approximations in different ways. We will introduce

two different methods in this manuscript. Schwarz and Gompper [16, 17] considered different

minimal surfaces on a cubic lattice. The principal structures are known already (see Fig. 9). For

such surfaces the elastic energy as given in equation 2 is minimal with respect to the boundary

conditions. In principle, such surfaces were also used as decorative architecture, for instance for

the Olympic stadion in Munich. They can be understood as soap bubbles, which form the shape

due to the surrounding (boundary condition) and the surface tension. The different minimal

surface energies of the cubic symmetry need to be calculated and compared for the different

structures. Interestingly, thermal fluctuations can approximately be taken into account. The

additional free energy term reads then:

Fsteric ∝ c−2
0

(

kBT

κ

)2
φ3
oil

(1− φoil)2
(3)

This energy depends on the bending rigidity κ and the oil volume fraction φoil. For large κ the

fluctuations are suppressed, and the additional free energy becomes small. Small equilibrium

curvatures c0 and large oil fractions φoil may make the steric term large. The result of this

calculations is that the cubic structures G, D, and P are favored with respect to the other cubic

structures taken into account (see Fig. 9).

Another approach bases on a Landau expansion. For this purpose the order parameter Φ needs

to be defined. Inside the whole sample the function Φ(r) takes values between −1 and +1.

The extreme cases indicate pure oil and pure water domains. Since the function is continuous

intermediate values exist in between. These values are usually interpreted as the presence of

surfactant. Pure surfactant would mean Φ = 0 while intermediate values are interpreted as

mixtures of oil or water with the surfactant. This modelling is contradicting in two aspects:

First, the domains of oil and water have usually sharp boundaries and the order parameter

would be discontinuous. Second, the nearly incompressible fluid would actually need two order

parameters to describe the physics completely. For simplicity reasons and due to its success,

the simple model is still often used in the literature [18]. Generally, the Landau approach

is very successful in describing fluctuations and phase transitions in solid state physics, soft

matter physics and more remote fields. The free energy functional was kept dimensionless in

reference [18], and it reads:

F [Φ] =

∫

dV

(

−χ
2
Φ2 +

1− Φ

2
ln

1− Φ

2
+

1 + Φ

2
ln

1 + Φ

2
− 1

2
(∇Φ)2 +

1

2
(∇2Φ)2 − µΦ

)

(4)

The first addend is a simplified treatment of interactions on the basis of a point like interaction

with the interaction parameter χ. It is fully correct for steric repulsions, and also for polymeric

systems with only next neighbor interactions. Coulomb interactions would need a distance de-

pendent interaction. The next two terms arise from the translational entropy of the oil and water



Amphiphilic Systems C1.11

Fig. 9: Left: The most prominent structure: The gyroid phase G (G1). Middle: The next most

prominent structures in a cubic phase. Especially the D and P (V1) are realized. Right: Double

frequency structures. These structures are not realized often. Graphs from [16, 17].

Fig. 10: Two-dimensional bulk phase diagram [18], showing disordered (D), lamellar (L), and

hexagonal (H) phases, as a function of the interaction parameter χ. The x-axis is spanned by

(a) the average order parameter Φ = −1 + 2φoil, and (b) the chemical potential µ. Dashed

lines in (a) denote triple lines and dashed lines in (b) denote the (metastable) L-D transitions,

which exhibit tricritical points (denoted by solid circles).
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domains (The size of the molecules is assumed to be identical). Actually, these two terms do

not follow strictly the concept of a Landau approach, because then only a Taylor expansion of

this expression would appear. The next two terms arise from the functional expansion of the

order parameter. Odd terms do not appear due to the high symmetry of the system (usually

assumed; for instance a gradient term could describe gravity effects). The gradient term de-

scribes the low surface tension of the system. The negative sign means that certain surfaces

between domains are favored (especially on large length scales). The next order correction sets

a limit to these surfaces (at small length scales the homogenous state is favored). The last term

describes the chemical potential describing the conjugated field [19]. In this way the phase di-

agram can be displayed as a function of the mean order parameter or the conjugated field. The

direct prediction is the existence of lamellar Lα and hexagonal H1 and H2 fields (see Fig. 10).

For such a phase diagram either different ordered fields Φ(r) with sinusodial oscillations are

assumed analytically and their free energy is compared on the basis of the integral (eq. 4). A

better approach is obtained by computer calculations of Φ(r) on a lattice. The computer can

take higher order oscillations into account more easily. Furthermore, a computer can simulate

thermal fluctuations relatively straight forward, while analytically the effort is often relatively

high, especially for the ordered phases. The left diagram (Fig. 10a) shows the phase diagram as

a function of a scaled reciprocal temperature (i.e. the interaction parameter χ and the composi-

tion Φ = −1 + 2φoil. There are different regions indicated by D for disordered, L for lamellar,

and H for hexagonal, and further coexistence regions. This phase diagram has a prominent

disordered region, which would mean that oil and water do not form separated domains. For

polymers this is possible as we will see later in the manuscript. For microemulsions the inter-

action parameter would be rather large such that mainly ordered phases exist, at least in this

sense that oil and water domains are formed. Equation 4 is quite oversimplified to describe

the complex behavior of microemulsions. So there exist more detailed approximations (see

Ref. [20, 21]), which aim at better descriptions, but on the other hand the more complicated

algebra cannot be discussed in this manuscript. It should be mentioned that Ref. [21] treats

Coulomb interactions quite explicitly.

4 Phase Diagram Measurements

Optical measurements base on different observations: Turbidity, meniscus, and depolarization.

Turbidity indicates a two- or three-phase coexistence, which is a quickly obtained criterion. The

observation of the meniscus after long waiting times allows to determine the ratio of the volumes

precisely. This is for instance helpful to determine the three-phase coexistence boundary (see

Fig. 4). By changing the composition (or temperature) and following the minority phase to

vanish the boundary to the two-phase coexistence is extrapolated. When observing a one-phase

sample with crossed polarizers one finds some phases, which depolarize the light while most

of the phases keep the polarization. The reason for depolarization is elongated domains, which

give rise to different propagation for different polarizations. Because most of the samples are

‘powder-like’, i.e. with many grains, the light is simply depolarized. Elongated domains are

found for the hexagonal phases H1 and H2, and for the lamellar phase. Please note that cubic

phases are isotropic and do not give rise to depolarization. Another, not really optic criterion is

also the viscosity. By shaking the sample tube, one gets rough information about the viscosity

and thus can speculate about the ordered phases.

The real scientific field behind viscosity is Rheology (see also Chapter A7). Usually, the sample
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is placed between two plates. One of the plates is oscillating either elongationally or rotationally

with relatively small excitations. For rotations the plates do not need to be parallel. One plate

is often conical to have the same shear for all radii. The still plate takes up the force. There

the amplitude and phase shift is measured with respect to the moving plate. In most cases the

amplitude is used to characterize the different phases. This method is rather indirect because

the absolute values often do not tell the difference. But it is plausible that lamellar phases and

hexagonal cylinder phases allow the domains to slide with small losses while cubic phases are

rather rigid. The L1 and L3 phase usually show the lowest viscosity. Low temperatures can lead

to rather rigid phases in parallel simply by raising the viscosity of oil and water.

Another method often used is nuclear magnetic resonance (NMR, see also Chapter A2). Mostly

the isotropic phases are distinguished from the phases with elongated domains [22]. The

anisotropic phases show a quadrupolar splitting of an otherwise single line. Some more ex-

amples for NMR measurements are given in Ref. [11]. Please note that the CMC can also be

determined by NMR [2] as mentioned before.

4.1 Scattering Methods

By small angle neutron and x-ray scattering one can distinguish ordered phases quite well (see

also Chapter A3). With neutrons limited resolution often does not allow to distinguish all higher

order peaks. This is why x-rays are most often preferred. The principle behind this method

is powder diffraction because usually the domains are not oriented and so many grains with

different orientation coexist. Especially, cubic phases cannot be ordered by external fields. So,

Debye-Scherrer rings are observed on a 2-dimensional detector. After averaging the intensities

on concentric circles the intensity is simply shown as a function of the modulus of the scattering

vector q. The observed peaks are indexed according to multiples of the q-value with respect to

the first peak with the lowest q. These are either square roots of natural numbers or of simple

fractions. In Soft Matter research these ratios are simply used as labels for the peaks instead

of the full information of the Miller indices (h, k, l). Nonetheless, the experimentalist needs to

know the crystallography [23] behind in order to exclude some ratios, which do not exist. In

Table 3 many important examples are shown.

The lamellar phase expands in two dimensions and the periodicity usually extends in z-direction

(with a distance d). The reciprocal lattice is periodic in z as well. The distances are given by

q = 2π/d. In reciprocal space the lattice is formed by delta-function like peaks. In x, y-direction

it arises from the infinite dimensions, and in z the strict periodicity is the reason.

The hexagonal phase consists of infinitely long cylinders (or rods) in z-direction, while in the

x, y-plane the structure is periodic. The reciprocal structure is periodic in x, y (note: the lattice

is turned by 60◦) while the delta-like peaks do not expand in z-direction. The number of peaks

with the same distance from the origin can be counted according to nh,k,l = 12 for h > k > 0
and nh,k,l = 6 otherwise. This frequency has to be taken into account for the intensities of the

Debye-Scherrer rings.

For the cubic structures the following shall be mentioned: The simple cubic (sc) lattice stays

simple cubic in reciprocal space. The body centered cubic (bcc) lattice becomes a face centered

cubic (fcc) lattice and vice versa. The gyroid phase is presented as a more exotic phase [24]. The

number of peaks of the cubic lattices can be counted according to nh,k,l = 2s · c, where s counts

the number of h, k, l different from zero (so here the sign matters), and c is a combinatorial

factor being 1 for h = k = l, 3 for h 6= k = l, and 6 for h 6= k 6= l.
The nomenclature I1 for the cubic phase is often quite sloppy. The name actually arises only
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Table 3: Most important ordered structures. The reciprocal space structure consists always of

delta-like peaks and can be taken as a structure factor; then the real space structure is assumed

to be infinitely thin. The lattice points of reciprocal space are given by Miller indices and are

sorted by vector length (as given in the third column). Colored dots give connection to Miller

indices; the origin is always indicated by a black dot.

real space reciprocal space lattice points of reciprocal space (Miller indices)

lamellar (lamellar) (h, 0, 0)
yw(1, 0, 0) 1 yw(5, 0, 0) 5 (9, 0, 0) 9
yw(2, 0, 0) 2 (6, 0, 0) 6 (10, 0, 0) 10
yw(3, 0, 0) 3 (7, 0, 0) 7 (11, 0, 0) 11
yw(4, 0, 0) 4 (8, 0, 0) 8 ...

hexagonal hexagonal (h, k, 0)
yw(1, 0, 0) 1 yw(2, 2, 0)

√
12 (3, 3, 0)

√
21

yw(1, 1, 0)
√
3 (3, 1, 0)

√
13 (5, 0, 0)

√
25

yw(2, 0, 0)
√
4 (4, 0, 0)

√
16 (4, 2, 0)

√
28

yw(2, 1, 0)
√
7 (3, 2, 0)

√
19 (5, 1, 0)

√
31

yw(3, 0, 0)
√
9 (4, 1, 0)

√
21 (4, 3, 0)

√
31

sc sc (h, k, l)
yw(1, 0, 0) 1 yw(2, 1, 1)

√
6 (3, 1, 1)

√
11

yw(1, 1, 0)
√
2 (2, 2, 0)

√
8 (2, 2, 2)

√
12

yw(1, 1, 1)
√
3 (2, 2, 1)

√
9 (3, 2, 0)

√
13

yw(2, 0, 0)
√
4 (3, 0, 0)

√
9 ...

yw(2, 1, 0)
√
5 (3, 1, 0)

√
10

bcc fcc (h, k, l) and (h+ 1
2
, k + 1

2
, l)

yw(1
2
, 1
2
, 0)

√

1
2

yw(1, 1, 1)
√
3 yw (2, 1, 0)

√
5

yw(1, 0, 0)
√
1 yw(3

2
, 1, 1

2
)
√

7
2

(2, 3
2
, 1
2
)
√

13
2

yw(1, 1
2
, 1
2
)
√

3
2

yw(2, 0, 0)
√
4 (5

2
, 1
2
, 0)

√

13
2

yw(1, 1, 0)
√
2 yw(2, 1

2
, 1
2
)
√

9
2

...

yw(3
2
, 1
2
, 0)

√

5
2

(3
2
, 3
2
, 0)

√

9
2

fcc bcc (h, k, l) and (h+ 1
2
, k + 1

2
, l + 1

2
)

yw(1
2
, 1
2
, 1
2
)
√

3
4

yw(2, 0, 0)
√
4 (3

2
, 3
2
, 3
2
)
√

27
4

yw(1, 0, 0)
√
1 (3

2
, 3
2
, 1
2
)
√

19
4

(2, 2, 0)
√
8

yw(1, 1, 0)
√
2 yw(2, 1, 0)

√
5 (5

2
, 3
2
, 1
2
)
√

35
4

yw(3
2
, 1
2
, 1
2
)
√

11
4

yw(2, 1, 1)
√
6 ...

yw(1, 1, 1)
√
3 (5

2
, 1
2
, 1
2
)
√

27
4

gyroid Ia3̄d (h, k, 0) with h+ k + l = 2n and further restrictions
yw(2, 1, 1)

√
6 (3, 3, 2)

√
22 (6, 1, 1)

√
38

yw(2, 2, 0)
√
8 yw(4, 2, 2)

√
24 (5, 3, 2)

√
38

yw(3, 2, 1)
√
14 (4, 3, 1)

√
26 (6, 2, 0)

√
40

yw(4, 0, 0)
√
16 (5, 2, 1)

√
30 (5, 4, 1)

√
42

yw(4, 2, 0)
√
20 (4, 4, 0)

√
32 ...
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Table 4: Form factors in connection with the liquid crystalline structures discussed in Table

3. The lamellar structure factor arises from a 1-dim, the cylindrical from a 2-dim, and the

spherical from a 3-dimensional calculation. J1 is the Bessel function of first kind and first order.

d indicates the lamellar domain thickness, and r the radius of the cylinder and the sphere.

lamellar F (q) =

(

sin(qd/2)

qd/2

)2

cylindrical F (q) =

(

2
J1(qr)

qr

)2

spherical F (q) =

(

3
sin(qr)− qr cos(qr)

(qr)3

)2

1 10
1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

 

qd/2 or qr

Fig. 11: Double logarithmic plots of the form factors F (q) for lamellae (black), cylinders (red),

and spheres (blue). For a clear representation the curves are shifted down by a factor of 1, 0.1

and 0.001. The original functions are normalized to 1 for q → 0.

from the word isotropic but the actual structure behind can be simple cubic, body or face cen-

tered cubic. One publication [25] demonstrates this problem for even more complicated cubic

structures. Furthermore, Brownian motion – as for microemulsions – can destroy the long range

order and so only fluid-like near-order is achieved. This is usually expressed in missing higher

order peaks, and no crystal-like order can be determined. Contrarily, the gyroid phase is usually

well distinguished from the cubic phase with globular domains, but this phase only appears for

polymer based systems.

For indexing the Debye-Scherrer rings Table 3 gives a good basis. So there are many examples

in the literature, which argue mainly on the basis of the appearing peaks [12]. For a quick

reference this technique might be sufficient. Nonetheless, the analysis can go one step beyond

if a model is assumed for the 3-dimensional structure of the domains. This means, that the

lamellae have finite thickness, the cylinders have a finite diameter, and the spherical domains

on the cubic lattice have a finite diameter. For such structures one then splits the problem in

two parts: The periodic structure is given by Table 3, while the single domain is described by a

form factor.
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Fig. 12: In this example small angle x-

ray scattering curves I(q) are shown as

a function of temperature [29]. For dif-

ferent temperatures different factors scale

the curves down for better visibility. At

the lowest temperature (100◦C) the or-

der is developed best, and many peaks

indicate the face centered cubic order of

spherical entities. The numbers give the

ratios of the peak q-values.

Fig. 13: Experimental phase diagram of a

diblock copolymer melt [30]. The substance

is polystyrene-polyisoprene (PS-PI). The y-

axis shows the scaled interaction parame-

ter χ; the x-axis shows the chain length ra-

tio fPI. The ordered phases are indicated

as LAM for lamellar (Lα), Ia3̄d for gyroid

(G1 and G2), HEX for hexagonal (H1 and

H2), and Im3̄m for the body centered cubic

phase (I1 and I2). The hexagonally perfo-

rated lamellar structure (HPL) is not found

consistently for all polymers. All structures

are also displayed in sketches above.

I(qh,k,l) ∝ S(qh,k,l) · F (qh,k,l) (5)

In this equation the structure factor S(q) arises from the delta-function peaks of the reciprocal

lattice. The form factor F (q) is connected with the 3-dimensional structure of the single domain.

Very often, equation 5 can be simplified to an orientationally averaged form according to:

Iav(q) ∝
1

q2
·

∑

qh,k,l=q

nh,k,l · F (q) (6)

Table 4 gives a list of form factors for differently shaped domains. The functions are plotted in

Fig. 11. It becomes clear now that zeros of the formfactor might result in further eliminations of

Debye-Scherrer rings. So the full list of Bragg peaks gives the maximum set of peaks, and the

exact form factor might cause further eliminations, which can be interpreted as a higher degree

of symmetry.
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A very good example for peak indexing is discussed now in context with Fig. 12. The system

is a polybutadiene-polyethyleneoxide (PB(1,4)-PEO) diblock copolymer in a melt. The phase

separation leads to spherical domains of PEO hosted in the PB matrix. At high temperatures

(203◦C) the spherical domains show only a near order. The repulsive interactions are modeled

by a Perkus-Yevic structure factor (excluded volume interaction). Upon lowering the tempera-

ture the liquid crystalline order becomes more prominent, which is indicated by a larger number

of higher order peaks. Finally, at 100◦C the best order is achieved, and the highest order visible

is found at a relative q value of
√
9.

It shall be mentioned that at this stage of the theory all thermal fluctuations are neglected.

Fluctuations will lead to undulations of the domain surface. This can lead to suppression of

higher order Bragg peaks. For instance for the lamellar order of a surfactant film or bilayer the

theory of Caillé describes the scattering. A good review can be found in Ref. [26] and further

developments in Ref. [27]. A simpler approximation for undulations of a domain surface can be

achieved by a multiplication of a Gaussian to equation 6. Another form of disorder is obtained

by non-perfect repetitions of the crystalline order. Then the paracrystal model [28] needs to be

taken into account. The result is broader Bragg peaks for the higher orders with lower peak

intensities. So any kind of disorder leads to weaker higher order Bragg peaks. It shall be

mentioned that the Caillé theory actually includes both ways of disorder.

5 Polymer-Based Microemulsions

Diblock copolymers are relatively similar to amphiphilic molecules. They are long chain

molecules with two different ends. The interactions between the chemically different parts

can be understood on the basis of segments. Very often, the different segments are not well

miscible, but the interactions are much weaker as for amphiphiles. The chain length is respon-

sible for the multiplication of individually interacting segments, such that the two blocks tend

to phase separation. This phase separation happens for the pure diblock copolymer melt, and

leads to ordered domains. In Fig. 13 a phase diagram of the polymer polystyrene-polyisoprene

(PS-PI) is shown. On the vertical axis the scaled interaction paramter χ is shown. It has the

temperature dependence χ = χh/T + χs with an enthalpic and entropic contribution. So high

temperatures are indicated by small χ and vice versa. The scaling with the segment numberN is

done because the observed phases do not always lie in the accessible temperature range, and so

one has to investigate different molar masses. The horizontal axis shows the chain length ratio

fPI, which is the ratio of the molar masses of both blocks (fPI = mPI/(mPS+mPI)). This phase

diagram can be well compared to the theoretical phase diagram of Fig. 10a (with Φ ∼ f ). At

high temperatures (low χ) the diblock copolymer is disordered. Here the interactions between

the different segments are favorable enough that no domains are formed. At low temperatures

different ordered phases are found. Experimentally, there is the lamellar phase in the center; the

gyroid phase in the direct neighborhood (the perforated layers shall be neglected); then there

is the hexagonal phase, and finally the body centered cubic phase. The simple theory of Fig.

10a only finds the lamellar and hexagonal phase, and – more important – some relatively large

areas of phase coexistence, but more precise theories about polymer melts are well capable of

describing the experimental phase diagrams much closer. The general layout of the phase dia-

gram is the same. So the order of different phases is found from the center to the outer regions

relatively symmetrically. Of course, the domain structure is inverted to higher fPI with respect

to lower fPI. Extreme concentrations fPI close to 0 or 1 are mainly dominated by the disordered
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Fig. 14: Left: A theoretical phase diagram [12] from a simple theory (a mean field theory

resulting in equations similar to eq. 4). A lamellar, two hexagonal, two cubic and two disordered

phases are predicted. Coexistence regions are in between (white), and three phase coexistence

is indicated in black. Right: An experimental phase diagram from the system PEO/PEP/PEP-

PEO [12]. Interestingly, a highly symmetric diagram with lamellar (L), gyroid (Gi), hexagonal

(Hi), cubic (Ci) and mixed/disordered (Mi) regions is found. This part corresponds quite well to

the theoretical phase diagram in the left. The bottom shows the microemulsion region, which is

also enlarged. The central triangle is a one-phase microemulsion, while the three surrounding

regions are two-phase. This part of the phase diagram resembles the phases found in Fig. 4.

region because entropy favors mixing for low and high concentrations.

While the pure diblock copolymer phase behavior resembles an amphiphilic system already

there is a polymer system, which comes even closer to the behavior of a microemulsion. This

system consists of two immiscible homopolymers (i.e. chains with only one type of segments)

and a diblock copolymer with the same building blocks as the homopolymers. The first studied

system is the PEO/PEP/PEO-PEP mixture (PEO is polyethyleneoxide, and PEP is polyethylene-

propylene – a saturated polyisoprene). Figure 14a shows the predicted phase diagram basing

on a simple theory (similar to eq. 4). There are again lamellar, hexagonal, cubic and disordered

regions. The experimental phase diagram finds even two gyroid regions and a microemulsion

phase. In this sense the phase diagram is highly similar to Figures 4 and 6. The phases have

been identified by scattering experiments [12] by indexing the observed peaks. As for the pure

diblock copolymer, the ordered phases do not show considerable coexistence regions. For very

tedious experiments small coexistence regions are sometimes observed, but they are by far

smaller then often predicted by theories. The highly important microemulsion phase is often

dominated by fluctuations. This means that the domains are not necessarily domains of purely

one segment type. The local demixing takes place only partly. Especially this character is im-

portant for applications. Very often the properties of two homopolymers shall be combined to

obtain a favorable material. Most polymers are immiscible because the interactions of single

segments are multiplied by the segment number, which then is larger compared to the mixing

entropy. So only by quenching polymer mixtures from high to low temperatures a more or less

homogenous mixture is obtained. The addition of a diblock copolymer is supporting the mis-

cibility tremendously, which might find applications for extremely immiscible polymers. One

has to keep in mind that diblock copolymers are considerably more costly than homopolymers

such that industry tries to avoid them as far as possible.
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Fig. 15: Left: Scattering of spherical polymer micelles [31] from PEP10-PEO10 and PEP22-

PEO22. The different curves arise from full contrast (downturn at lower/higher q for

higher/lower molecular mass). Note: The forward scattering can be obtained since the curves

are constant for low q. Right: Scattering of cylindrical polymer micelles from PEP1-PEO1. The

power law q−1 at low q is characteristic, which indicates the ‘infinitely’ long domains. The inset

presents the monomer density as a function of the radius.

6 Scattering of Non-Crystalline Phases: Polymeric and Worm-

Like Micelles

The scattering of ordered phases is unique and supports the identification of the different phases.

For the diluted phases this high level of uniqueness is not reached, but usually the dimensions

of the micelles can be extracted. So some examples will be discussed in the following.

The polymer PEP-PEO can be dissolved in water. Then the PEP forms a compact core while the

PEO forms a dilute corona in the aqueous phase. As we know from simple amphiphiles there

is a phase transition between spherical and cylindrical micelles. For the high molar masses

spherical domains are obtained. This can be judged by the forward scattering, which is reached

within our q-window. Detailed modeling of course supports the finding. For the low molar

masses cylindrical domains are found. A characteristic q−1-power law is found in the q-range

0.002 to 0.02Å−1. This indicates relatively rigid cylindrical structures. The forward scattering

is not reached in the experimental q-range, but in principle at some point the curve would reach

a plateau with a finite forward scattering. So the presented experiments cannot judge about the

length of the cylinders. The inset of Fig. 15b gives a radial distribution of the monomer density

of the corona. In principle it is quite dilute and spans a relatively wide range to large distances.

This finding supports the picture of a compact core and a dilute corona.

The best way to get access to the core and shell structure is small angle neutron scattering.

The core polymer block is deuterated while the corona block is protonated. By using different

compositions of H2O and D2O each structure can be made visible. In the full contrast (H2O)

basically the whole polymer is visible. For the core, intermediate and shell contrast, increasing

amounts of D2O were used. Results of such a study are shown in Fig. 16. In the left figure,

almost spherical micelles are found because the scattering curves are nearly flat at small q. In

the right figure, cylindrical micelles are found, which is indicated by the q−1-power law at small

scattering vectors q. The size of the compact core and the dilute corona can be directly seen

from such figures. The downturn to the first minimum appears at smaller q for the core than
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Fig. 16: Left: Scattering of almost spherical micelles of the polymer Poly(HOVE-b-NBVE) with

molar masses of 7.5 and 3 kg/mol of the core and corona forming blocks [32]. The slight in-

clination at small q indicates a small fraction of cylindrical micelles. The different symbols

3, �, △, and ◦ indicate the aqueous solvent being H2O to D2O. The corresponding contrasts

are called full, core, intermediate and shell contrast. Interestingly, the intermediate contrast

reaches nearly the zero-average contrast condition, which is indicated by a very low forward

scattering. Right: Scattering of cylindrical micelles of the polymer Poly(HOVE-b-NBVE) with

molar masses of 7.5 and 6 kg/mol of the core and corona forming blocks. The contrast condi-

tions are the same as before.

for the corona. Furthermore, the interesting case of nearly zero average contrast is observed.

Then, the forward scattering is ideally zero, while the scattering at finite q indicates alternating

structures from protonated-deuterated-protonated regions (according to the corona-core-corona

structure). Macroscopically, the degree of deuteration in the whole sample is the same while

locally the micelle structure appears. From the scattering contrast variation experiment and

the simultaneous description of the scattering curves one obtains more precisely the different

structures of the core and corona. In the simplest case one finds two radii. Especially for the

corona one usually needs to assume a rather wide distribution of the segments, and so the model

usually carries more information than a simple radius.

A theoretical model for polymeric micelles was formulated by Halperin [33]. It bases on three

contributions to the free energy. The first contribution considers the corona. Close to the core

the polymers are anchored densely enough such that a polymer gel is formed. This gel has a

typical mesh size, which increases to the outer regions. Each polymer part inside such a mesh is

called a blob and contributes with 1 kBT to the free energy. The second contribution comes from

the polymer stretching inside the core. Here, the equilibrium chain dimension of a melt has to

be compared with the polymer size in the real core. The polymer is seen as an entropic spring.

The relative size gives rise to an entropic contribution to the free energy. The last contribution is

the surface tension of the core with respect to the aqueous region. Here, simply the core surface

times a classical surface tension yields the enthalpic contribution to the free energy. From such

a model the free energy is minimized to yield the aggregation number Nagg, from which all

dimensions and the shape of the micelle can be determined.

So far we have only described rigid cylindrical micelles. Locally, very often the micelles stay
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Fig. 17: Left: The polymer polystyrene in the good solvent CS2 [34]. The three curves are

obtained for deuterated backbone (+), deuterated phenyl ring (△), and fully deuterated chain

(◦). The polymer is a worm-like object and resembles worm-like micelles with a small cross

section. At low q < 0.02Å−1 the Guinier scattering observes the whole polymer. At intermediate

q up to 0.2Å−1 the wormlike power law with q−1.67 is observed. At high q the finite diameter of

the polymer becomes visible. Right: The system water/d-isooctane/lecithin with a molar water-

to-lecithin ratio of 2.5 and lecithin concentrations of 0.9 mg/ml (◦) and 3.5 mg/ml (2) [4].

Wormlike micelles are formed. At low q < 0.001Å−1 the Guinier scattering observes the whole

micelle. At intermediate q up to 0.02Å−1 the wormlike power law with q−1.67 is observed. At

slightly higher q up to 0.05Å−1 the local rigidity is indicated by a q−1. At high q the finite

diameter of the micelle is observed.

rigid while on larger length scales the fluctuations lead to the loss of correlations. In the ex-

treme case, then the micelle follows a random walk. This concept is also known from polymers

(and diffusion processes). A polymer in a solvent with zero exchange interaction (theta solvent)

shows the fractal structure of the polymer with a q−2 dependence. Here the self-similarity of

sub-sections with the whole polymer is expressed. The exponent −2 arises from the follow-

ing: A random walk lacks correlations between individual steps. For the ensemble averaged

squared end-to-end distance R2
ee one obtains the proportionality to the number of steps N (see

also Chapter B1). Thus, the segment number as a function of the length scale carries the expo-

nent 2. The scattering intensity is proportional to the number of scatterers while the length scale

is connected with the reciprocal q vector. Fig. 17a shows the example of a polymer in a good

solvent. Accordingly, the power law changes from q−2 to q−1.67 for the Flory chain. The ex-

cluded volume interactions are responsible for this power law, which means the intersections of

the chain appear in the free energy as an important contribution. The other example of Fig. 17b

shows the scattering experiment from an inverse micelle formed by water/d-isooctane/lecithin.

Again, a clear power-law for the worm-like micelle with excluded volume interactions is ob-

served. Apart from that, a small q-range at slightly higher q indicates the still locally rigid

micelle. Both examples are very good, because the whole object is observed in the Guinier

range at lowest q. From the forward scattering I(q → 0) the connection to the concentration

φ and the volume of the particle (i.e. polymer or micelle) can be made. In the simplest case

one finds I(q → 0) ∝ φVparticle. In reference [4] a more complicated renormalization theory is
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applied. The other parameter of the Guinier-range is the overall size of the worm-like object,

i.e. Ree =
√
6 · Rg. Scattering scientists usually prefer the radius of gyration Rg instead of

the end-to-end distance. Furthermore, at high q the small scale structure of the polymer or the

micelle is indicated. For the micelle it is a simple circular cross-section. For the polymer a more

atomistic model has to be taken into account. The overall example of worm-like objects shows

that many structural parameters can be obtained from a single scattering experiment. The power

laws give clear hints to the kind of structure formed. A good model is highly recommended to

extract the structural parameters to the highest precision possible.

7 Polymer Boosting Effect

The polymer boosting effect was first observed by phase diagram measurements [35]. For char-

acterizing the efficiency of a surfactant equal amounts of water and oil are mixed with a variable

amount of surfactant φC. Then the phases are determined as a function of temperature for each

φC. Such a phase diagram is displayed in Fig. 18. Without polymer there is a one-phase region

(fish-tail) with a minimum amount of surfactant, which is needed to solubilize the water and oil.

This surfactant amount is a characteristic figure for the efficiency of a surfactant. When adding

polymer as a fourth component the total amphiphile concentration φC+D is the considered vari-

able. The relative amount of the polymer is given in units δ = mpolymer/(msurf + mpolymer),
which takes values of 1.4 to 10%. However, the absolute values in the overall microemulsion

are tiny and take values from 0.2 to 0.4%. Nonetheless, these small amounts of polymer are

responsible for the one-phase region to move to smaller amphiphile concentrations. This means

the diblock copolymer makes the surfactant more efficient. Using small angle neutron scatter-

ing experiments under contrast variation [37] it could be proved that the diblock copolymer is

anchored in the surfactant membrane. So each block finds the way in the domain where it is

soluble, and takes a mushroom-like conformation. Due to its anchoring the polymer exerts a

pressure on the membrane, which is responsible for an effectively higher membrane rigidity.

This leads to the formation of larger domains with a better surface to volume ratio. This is the

quick explanation for the polymer boosting effect, which we shall discuss in more details now.

We have already seen that the free energy of a microemulsion is dominated by the elastic be-

havior of the membrane [?]. There are two moduli κ and κ̄, which describe the energy needed

to deform the membrane with a certain mean curvature and a saddle splay curvature. For sim-

plicity, we assume that the equilibrium curvature c0 is zero, which is true for the phase inversion

temperature, the temperature of the fish-tail-point. The bending rigidity depends on different

physical contributions as we will see now [38]:

κR
kBT

=
κ0
kBT

pure membrane

+
α

4π
ln(ψ) thermal fluctuations

− 0.0238
φp(R

3
hW +R3

hO)

Vp
homopolymer

+
1

12

(

1 +
π

2

)

σ(R2
dW +R2

dO) diblock copolymer

(7)

The first contribution arises from the membrane itself. The surfactant molecules withstand

deformations due to their molecular structure. The next addend describes the spatial renormal-

ization. Due to the fluctuations of the membrane the membrane looks less rigid on larger length
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scales (α = 3). The negative sign arises from the logarithm of the membrane volume fraction

ψ = φC − 0.01 < 1, which is the total surfactant content minus the unimerically dissolved sur-

factant. While corrugated paper looks more stiff on larger length scales the membrane shows

the opposite effect. The next contribution describes the homopolymer effect. It is proportional

to the homopolymer concentration φp, the cubed end-to-end distances of the water and oil sol-

uble polymers RhW and RhO and the reciprocal volume of the polymer Vp. The last addend is

the diblock copolymer contribution. It is proportional to the grafting density σ (no. of polymers

per membrane area) and the squared end-to-end distances of the water and oil soluble blocks

RdW and RdO. The theoretical effect is also depicted in Fig. 19 where diblock copolymers exert

a pressure on the membrane, which leads to flattening. Contrarily, homopolymers facilitate the

fluctuations of the membrane. The saddle splay modulus in principle has the same dependency

as κ, according to:

κ̄R
kBT

=
κ̄0
kBT

+
ᾱ

4π
ln(ψ) + 0.0211

φp(R
3
hW +R3

hO)

Vp
− 1

6
σ(R2

dW +R2
dO) (8)

It should be emphasized that the three contributions from fluctuations (ᾱ = −10/3), and the

polymers are very similar in magnitude but they have opposite signs as for κ. So one can roughly

say that κ and κ̄ have the same value but opposite signs. The moduli now have to be connected to

observable effects in order to compare them. From molecular dynamics simulations the saddle

splay modulus takes a certain value at the fish tail point, i.e. κ̄R = κ̄FTP. This value is much

smaller than the intrinsic surfactant molecule contribution κ̄0, and so κ̄FTP can be neglected. So

equation 8 can be solved for the surfactant content, which will read then:

ψ = ψ0 exp

(

β̄
φp

Vp
(R3

hW +R3
hO)− Ξ̄σ(R2

dW +R2
dO)

)

(9)

The minimum surfactant concentration of the pure system arises from the constant κ̄0, and can

be measured directly. The coefficients β̄ and Ξ̄ are derived from equation 8 by dividing by ᾱ. It

is directly obvious that adding diblock copolymer leads to smaller amounts of surfactant needed

to solubilize oil and water while homopolymers show the opposite effect. Thus, starting from

the Helfrich free energy we have explained how the polymer boosting effect works. But we are

still left with the connection of κ to experiments. If one conducts small angle neutron scattering

experiment on bicontinuous microemulsions one observes typical scattering curves as depicted

in Fig. 20. There is a pronounced peak at a scattering vector q∗, which is connected with the

domain spacing d ≈ 2π/q∗. The width of the peak is proportional to the reciprocal correlation

length ξ. At small angles there is still considerable forward scattering. So, the microemulsion

does not only have alternating domains with a periodicity d, but also long range fluctuations.

This arises from local enrichments of water or oil because the surfactant does not fully make

sure that the local concentration is the overall concentration. The forward scattering is also

directly proportional to the reciprocal osmotic compressibility. At large q there is the Porod law

I(q) ∝ Pq−4, which comes from the sharp surfaces of the water and oil domains. The Porod

constant P is proportional to the surface per volume Stot/Vtot, and, therefore, is proportional

to the membrane volume content ψ. The overall scattering function is well described by the

following formula:
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Fig. 18: Phase diagram: Temperature as

a function of the amphiphile content φC+D.

The phase diagram without polymer (•)

shows different regions: At high and low

temperatures there are two-phase coexis-

tence regions (2̄ and 2). For intermedi-

ate temperatures at higher surfactant con-

tents there is the one-phase bicontinuous mi-

croemulsion (1). For intermediate temper-

atures at low surfactant contents there is

the three-phase coexistence region (3) with

a microemulsion coexisting with a water-

rich and an oil-rich phase. Furthermore,

there are the one-phase boundaries (fish-

tails) shown for additions of amphiphilic di-

block copolymer at concentrations of δ =
0.014(�), 0.048(N) and 0.097(H). The

added polymer was PEP10-PEO10.

Fig. 19: Scheme of homopolymers and

diblock copolymers at a surfactant mem-

brane in a microemulsion. The homopoly-

mer favors membrane fluctuations while

the diblock copolymer exerts a pressure

on the membrane, which causes flatten-

ing.

I(q) =
dΣ

dΩ
(q) =

(

8π〈ν2〉/ξ
q4 − 2(k20 − ξ−2)q2 + (k20 + ξ−2)2

+
G · erf12(1.06qRg/

√
6)

1.5q4R4
g

)

exp(−σ2q2) + bbackgr (10)

The normalized intensity I(q) is given by the macroscopic scattering cross section dΣ/dΩ. The

first fraction in the top line of equation 10 describes the long wavelength behavior for wave-

lengths down two approximately q∗, i.e. the domain spacing. This expression is known as the

Teubner-Strey theory [39]. The term arises from a Landau description of the order parameter,

similar to eq. 4. The Landau approach assumes that the free energy can be described as a
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Fig. 20: A typical scattering pattern of a bi-

continuous microemulsion (intensity vs. q) in

bulk contrast, i.e. with D2O, hydrogenated

oil and hydrogenated surfactant [40]. From

the peak position the domain spacing is de-

rived, while the peak width indicates the cor-

relation length. The grey curve shows the fit

with the Teubner-Strey theory. The solid line

is a fit with the extended theory of equation

10.

Fig. 21: The bending rigidity κ as a

function of the scaled diblock copolymer

amount [36]. According to equation 7

this function is linear. It shows that the

membrane becomes more rigid with the

diblock copolymer addition. Different

symbols arise from different molar masses

of the polymer.

functional expansion of the order parameter(s). From symmetry considerations, and consider-

ations about the highest order terms needed, one usually arrives at rather simple expressions.

Using the Fluctuation-Dissipation Theorem the scattering function can be calculated from the

free energy. This basically leads to the fourth order polynomial in the denominator. From the

real space correlation function it then can be judged, which structural information is found in

the coefficients [37]. Here the real wave number k0 = 2π/d appears, which is only approxi-

mately the peak position q∗. The corellation length ξ is also well defined now. The numerator

is connected to the scattering length density difference ∆ρ and the water-water correlation av-

erage, according to 〈ν2〉 = (∆ρ)2φW (1 − φW ) with φW being the water content. The second

fraction in equation 10 describes additional surface [40], which is not expressed by the Landau

approach, which is obvious because the approach comes from long wavelengths and does not

cover the exact domain structure. So the sharp transition from water (+1) to oil (−1) is not

well described, and the short wavelength fluctuations shorter than the domain spacing are not

well covered either. The expression is rather phenomenological, but was motivated in another

context with fractal structures by Beaucage. His approach described the long wavelength be-

havior by a Guinier approach, and the short wavelength behavior was exactly this term we find

here, except that we restricted ourselves to the Porod behavior for sharp surfaces. Here, the

radius of gyration Rg describes the size of a single domain (i.e. Rg ∼ d/2). The amplitude G
is correlated with the amount of additional surface while the overall Porod constant is given by

P = 8π〈ν2〉/ξ + G/(1.5R4
g). The error function erf(x) is connected to the integral of a Gauss

peak. In case that the surfactant molecules are slightly excited individually, the exponential fac-
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tor takes care of this. Usually, this kind of roughness is described by a length of σ = 2Å, which

is practically invisible for most of the examples. The last addend describes the incoherent back-

ground. Mostly, the scattering curves are measured for large enough q, such that the constant

level bbackgr is well defined. From the scattering experiment we obtain the structural parameters

k0 and ξ. The Gaussian Random Fields Theory [37] connects the structural parameters with the

bending rigidity according to:

κR
kBT

=
5
√
3

64
k0ξ (11)

Within the derivation the assumption was made that the bending rigidity is large enough, other-

wise a more complicated function will appear. From practical applications formula 11 appeared

quite precise [37]. Now, the obtained bending rigidity κ can be compared with the model (see

Fig. 21). We obtain a linear increase as a function of the scaled polymer amount. This means

that diblock copolymers stiffen the membrane. From literature [37] it is known that the loga-

rithm of the minimum surfactant amount shows the same linear behavior according to eq. 9.

This shows that two different observations (scattering and phase diagram) can be compared on

the same level through the microscopic interpretation via the Helfrich free energy.

While diblock copolymers are quite expensive for industrial applications a simpler way for syn-

thesizing amphiphilic polymers was found. Starting from a linear long alcohol (like dodecanol)

the water soluble block can be polymerized quite easily. This yields an amphiphilic polymer

with a short hydrophobic part (C12) and a polymer-like water soluble part. This kind of poly-

mer is cheap to produce and it is highly water soluble. The latter is important for formulations

because the symmetric diblock copolymer dissolves only very slowly. The slight unsymmetry

results in a small equilibrium curvature, which is compensated by slightly higher temperatures.

So, even for applications a suitable polymer was found.

8 Microemulsions Near Planar Walls

Surfaces are highly important for the application of microemulsions. This is obvious for clean-

ing processes because the fluid shall take up the dirt from the surface. But also in enhanced

oil recovery applications there are huge surfaces from the sand stone where the oil is located.

For instance the cracking fluid is an aqueous surfactant system with wormlike micelles. The

micelle network leads to a high viscosity. With this high viscosity the pressure energy can be

deposited in the sand stone, which leads to crack formation. To the cracks sand particles (the

proppant) are transported to avoid the collapse of the cracks after the application. The aqueous

surfactant solution forms a microemulsion in contact with oil, which has a low viscosity. After

the application oil can be produced at a higher speed.

So, one important model system to study is a bicontinuous microemulsion adjacent to a hy-

drophilic planar wall [41]. This question was addressed by computer simulations [41]. A real

space picture is shown in Fig. 22. One can see the lamellar order near the surface and the bi-

continuous microemulsion in the volume. A kind of order parameter is obtained by laterally

averaging the structure as a function of the depth (Fig. 23). Here, two perfect lamellae are

observed before the order decays into the volume where an average is reached. This decay is

what one would expect for a lamellar order induced by a surface. The real question is how the

decaying order of the lamellae is realized. From the lateral cuts in the bottom of Fig. 23 we see

that there are perforations in the lamellae, which lead to the decreasing order. At this point, the
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Fig. 22: A real space image of a microemulsion near a planar hydrophilic wall from a computer

simulation [41]. The surfactant layer is depicted with blue and red facing the water and oil

domains. Close to the surface a lamellar order is formed while in the volume the microemulsion

is bicontinuous.
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Fig. 23: Top: The laterally averaged structure of the microemulsion near a planar wall. This

function looks like an order parameter of a decaying lamellar order. Bottom: Lateral cuts in

different depths (< 100, ∼ 300, and 1000Å). There is a) perfect lamellar order, b) perforated

lamellae, and c) bicontinuous microemulsion.



C1.28 H. Frielinghaus

0.00

0.02

0.04

=440Å

 

 

 

0.00

0.02

0.04

660Å

 

 

 

-0.050 -0.025 0.000 0.025 0.050

0.00

0.02

0.04

Q
Z [Å

-1
]

Q
Z [Å

-1
]

Q
Z [Å

-1
]

850Å

 

 

  Q
Y
 [Å-1]

Fig. 24: GISANS patterns at different penetration depths Λ. For 440Å there is a rather strong

surface scattering background in the center and a lamellar peak is only slightly indicated in the

middle top. For 660Å the lamellar peak becomes stronger. For 850Å both the lamellar peak and

the bicontinuous Debye-Scherrer ring are visible.

perforated lamellae of a diblock copolymer shall be recalled (Fig. 13). Nonetheless, we believe

that the perforations in the microemulsion are a transition state, which is not stable.

A microemulsion was studied by grazing incidence small angle neutron scattering (GISANS)

and reflectometry experimentally. The reflectometry measurements basically confirm the de-

caying order parameter of the simulations. The GISANS experiments are also sensitive to the

lateral structures and so there were contributions from the bicontinuous region as well (Fig.

24). Small angle scattering with grazing incidence leads to an evanescent (tunneling) wave in

the sample. So the sample is illuminated with a variable depth. This depth depends on the

scattering length density difference of the silicon block, which provides the solid-liquid sur-

face and the overall microemulsion. Furthermore, the incident angle allows for fine-tuning the

penetration depth of the evanescent wave. In the current study the penetration depth Λ was

varied between ca. 400 and 1000Å. For small Λ the surface scattering dominates the signal, and

the lamellar structure appears only weakly with a Bragg peak. At intermediate Λ ≈ 660Å the

Bragg peak becomes more prominent. At higher Λ the bicontinuous microemulsion becomes

visible as well. From this experiment the integral intensities of the Bragg peak and the Debye-

Scherrer ring are determined. Their ratio is plotted in Fig. 25. The experimental points show an

increasing linear behavior from penetration depths of 400Å on where the bicontinuous phase

starts to be visible. So the well ordered lamellar phase covers the first 400Å. For the computer
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Fig. 25: The integral intensity ratio of the bicontinuous and the lamellar structure as obtained

from GISANS experiments (�). At a penetration depth (scattering depth) Λ of ca. 400Å the

ratio starts to grow linearly. This value indicates the beginning of the perforated lamellae. For

the simulations (◦) the ratio starts to grow already at 200Å where the perforated lamellae are

found explicitely.

simulations the same plot shows that the characteristic depth is ca. 200Å. From the real space

structure it is known that from this depth on the perforated lamellae expand. The reason is that

the typical length scale of the perforations is nearly the same as for the bicontinuous structure

(see Fig. 23). So the GISANS experiment determines the beginning of the perforated lamellae

because it appears like an isotropic structure.

9 Pickering Emulsions and Ianus Particles

So far we have seen surfactant molecules and diblock copolymers forming self-assembled struc-

tures on the nano scale. Basis for this effect was the amphiphilicity, which favored the formation

of hydrophilic and hydrophobic domains, which show a stronger or weaker kind of organization.

This concept does not only hold on the nano scale. Certain particles in the sub-micrometer scale

can form self-assembled structures on the micrometer scale. The simplest particle is a homoge-

nous sphere. If the surface tensions of water/particle and oil/particle are chosen right the parti-

cles tend to cover the surface of the oil and water domains and, thus, pickering emulsions [42]

are obtained (Fig. 26). So even non-amphiphilic meso-particles can stabilize emulsions. Their

advantage is that the particles leave space for exchanging substances between the hydrophilic

and hydrophobic volumes. The pickering emulsions might be used if the final product of a

process must not have impurities from surfactants.

The pickering emulsions can also be used as templates to produce amphiphilic meso-particles,

the Ianus particles [42]. A good review about Ianus particles is given in Reference [43]. Ianus

was a god with two faces for the ancient Romans. The two faces stand for the amphiphilic-
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Fig. 26: A transmission electron micrograph of a pickering emulsion [42]. Spherical wax

domains are surrounded by the untreated silica particles and dispersed in water.

Fig. 27: Transmission electron micrograph

of a micelle formed by Ianus particles [44].

Especially the outer water soluble regions of

the particles become clearly visible.

Fig. 28: Structure of micelles formed

by Ianus particles from computer simula-

tions [45]. There exist (a) spherical mi-

celles and (b) vesicles similar as for sur-

factant molecules.

ity of the meso-particles. These particles now have very similar properties as surfactants or

amphiphilic molecules. So, they stabilize emulsions by forming a layer around the domains.

Again, these emulsions leave some space for exchange of substances between both domains.

But also the pure particles in aqueous solution form micelles [44] alike surfactants (Fig. 27).

These micelles have also been investigated theoretically [45]. Besides simple micelles also

vesicles are predicted (Fig. 28).

The variety of practically produced Ianus particles is large. Very often amphiphilic polymers

play a role, or the particles are synthesized from (micro)emulsions. The particles may have

several patches – not only two. Then strings and networks of the meso-particles are obtained.

So the options for Ianus particles are maybe even larger than for simple surfactants. Due to the

high effort of the synthesis not many applications are known.
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10 Summary

We have seen that there exist single molecules with chemical groups, which dislike each other.

This property is called amphiphilicity. Surfactants are the most widely used substance with

hydrophilic heads and hydrophobic tails. There exist ionic and non-ionic surfactants. Sur-

factants need to cross the critical micelle concentration to form micelles with various shapes.

These shapes already have a high degree of symmetry because the surfactant molecules are all

identical. At high concentrations interactions between the micelles come into play and liquid

crystalline ordering takes place. These structures have again a high degree of symmetry, again

because of identical building blocks.

Microemulsions involve two kinds of solvents and enlarge the variety of phases (or shapes)

found in the phase diagram. Domains of water and oil form with a surfactant layer in be-

tween. The theoretical concept of Helfrich treats the surfactant layer as an elastic membrane

with negligible thickness. Very important are bicontinuous phases where domains expand over

macroscopic distances.

Polymers can also be treated with the concept of amphiphilicity even when the interactions are

much weaker. The large number of segments leads to effectively strong enough interactions in

comparison to the entropy of mixing. Interestingly, polymeric microemulsions exist as well.

Micelles of amphiphilic polymers can be obtained when dissolving in water. The water soluble

parts form a hairy corona.

Amphiphilic block copolymers as additives in a microemulsion lead to the polymer boosting

effect. The efficiency of the surfactant is dramatically increased. The diblock copolymer exerts

a pressure on the surfactant membrane, which leads to flattening. Thus, larger domains can be

formed with a better surface to volume ratio.

Microemulsions tend to form a lamellar order near planar walls. The decay of the lamellar order

is realized by perforations in the lamellae.

Meso-particles can also be used to obtain self-assembly. The pickering emulsions are formed

with homogenous particles. The particle layer on the domain surface allows for the exchange

of substances. The Ianus particles have a similar behavior as surfactant molecules.

Scattering experiments support the structure identification. They give length parameters in a

direct way while averaging over a large sample volume. The connection to microscopic theories

reveals the mechanisms of amphiphilic molecules. This understanding is supporting the next

generation of applications when simple formulation experiments do not succeed anymore.

Polymers are the key additives to amphiphilic systems of the future. While in this manuscript

only linear amphiphilic polymers were introduced the diversity of possible architectures is huge.

Specific architectures allow to tailor polymers for very specific applications. At the moment we

are only at the beginning of a promising story of basic research.
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