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CHAPTER  5

LIQUID  FILMS  AND  INTERACTIONS  BETWEEN  PARTICLE  AND  SURFACE

The collision of a colloid particle with an interface, or with another particle, is accompanied by the

formation of a thin liquid film. The particle(s) will stick or rebound depending on whether repulsive or

attractive forces prevail in the liquid film. In the case of an equilibrium liquid film the repulsive forces

dominate the disjoining pressure, which is counterbalanced by the action of transversal tension, the

latter being dominated by the attractive forces in the transition zone film�meniscus. The Derjaguin

approximation allows one to calculate the force across a film of uneven thickness if the interaction

energy per unit area of a plane-parallel film is known.

Next we consider interactions of different physical origin. Expressions for the van der Waals

interaction between surfaces of various shape are presented. Hypotheses about the nature of the long-

range hydrophobic surface force are discussed. Special attention is paid to the electrostatic surface

force which is due to the overlap of the electric double layers formed at the charged surfaces of an

aqueous film. The effects of excluded volume per ion and ionic correlations lead to the appearance of a

hydration repulsion and an ion-correlation attraction. The presence of fine colloidal particles in a liquid

film gives rise to an oscillatory structural force which could stabilize the film or cause its step-wise

thinning (stratification). At low volume fractions of the fine particles the oscillatory force degenerates

into the depletion attraction, which has a destabilizing effect. The overlap of “brushes” from adsorbed

polymeric molecules produces a steric interaction. The configurational confinement of thermally

excited surface modes engenders repulsive undulation and protrusion forces. Finally, the collisions of

emulsion drops are accompanied with deformations, i.e. deviations from the spherical shape. They

cause extension of the drop surface area and change in the surface curvature, which lead to dilatational

and bending contributions to the overall interaction energy. The total particle�surface (or

particle�particle) interaction energy is a superposition of contributions from all operative surface

interactions. In addition, hydrodynamic interactions, due to the viscous friction in a liquid film, are

considered in the next Chapter 6.
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5.1. MECHANICAL BALANCES AND THERMODYNAMIC RELATIONSHIPS

5.1.1. INTRODUCTION

A necessary step in the process of interaction of a colloidal particle (solid bead, liquid drop or

gas bubble) with an interface is the formation of a liquid film (Fig. 5.1). For example, a liquid

film of uniform thickness can be formed when a fluid particle approaches a solid surface, see

Fig. 5.1a. The shape of such a film is circular; the radius of the contact line at its periphery is

denoted by rc . From a geometric (and hydrodynamic) viewpoint a liquid film is termed thin

when its thickness h is relatively small, viz. h/rc << 1. From a physical viewpoint a liquid film

is called thin if its thickness is sufficiently small that the molecular interactions between the

two adjacent phases across the film are not negligible; as a rule this happens for h � 100 nm

[1]. These molecular interactions across the film are often termed surface forces [2,3]. The

surface force per unit area of the film is called disjoining pressure, �, [4]. In general, the

disjoining pressure depends on the film thickness, � = �(h). Since � is an excess pressure in

the thin liquid film with respect to the bulk liquid, � vanishes in a thick film, that is ��0 for

h��.

The disjoining pressure can be both repulsive (� > 0) and attractive (� < 0). A repulsive

disjoining pressure may keep the two film surfaces at a given distance apart, thus creating a

stable liquid film of uniform thickness, like that depicted in Fig. 5.1a. In contrast, attractive

disjoining pressure destabilizes the liquid films. In the case of two solid surfaces interacting

across a liquid � < 0 leads to adhesion of the two solids. If one of the film surfaces is fluid, the

attractive disjoining pressure enhances the amplitude of the thermally excited fluctuation

capillary waves, which grow until the film ruptures [5-9], see Section 6.2.

In the case of a solid particle approaching a solid surface, the gap between the two surfaces can

be treated as a liquid film of nonuniform thickness (Fig. 5.1b). Similar configuration may

happen if the particle is fluid, but its surface tension is high enough, and/or its size is

sufficiently small.

If the interface is fluid, it undergoes some deformation produced by the interaction with the
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approaching particle (Fig. 5.1c). When the liquid film ruptures, one says that the particle

“enters” the fluid phase boundary. The occurrence of “entry” is important for the antifoaming

action of small oil drops; this is considered in more details in Chapter 14 of this book.

If a particle is entrapped within a liquid film (Fig. 5.1d), two additional liquid films appear in

the upper and lower part of the particle surface. Such a configuration is used in the film

trapping technique (FTT), which allows one to measure the contact angles of �m-sized

particles [10], and to investigate the adhesive energy and physiological activation of biological

cells [11,12]. (See also Fig. 5.6 below.)

In this chapter we first derive and discuss basic mechanical balances and thermodynamical

equations related to thin liquid films and equilibrium attachment of particles to interfaces

(Section 5.1). Next, we consider separately various kinds of surface forces in thin liquid films

(Section 5.2). In Chapter 6 we present an overview of the hydrodynamic interactions

particle�interface and particle�particle. (Section 6.2).

Fig. 5.1. Various configurations particle�interface which are accompanied with the formation of a thin
liquid film: (a) fluid particle (drop or bubble) at a solid interface; (b) solid particle at a solid
surface; (c) solid or fluid particle at a fluid interface; (d) particle trapped in a liquid film.
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5.1.2. DISJOINING PRESSURE AND TRANSVERSAL TENSION

Figure 5.2 shows a sketch of a fluid particle (drop or bubble) which is attached to a solid

substrate. At equilibrium (no hydrodynamic flows) the pressure Pl in the bulk liquid phase is

isotropic. The pressure inside the fluid particle, Pin, is higher than Pl because of the interfacial

curvature (cf. Chapter 2):

lin PP
R

��

�2  � Pc (5.1)

where � is the fluid�liquid interfacial tension, Pc is the capillary pressure (the pressure jump

across the curved interface), and R is the radius of curvature. The force balance per unit area of

the upper film surface (Fig. 5.2) is given by the equation [13]

Pin = Pl + �(h) (5.2)

In other words, the increased pressure inside the fluid particle (Pin > Pl) is counterbalanced by

the repulsive disjoining pressure �(h) acting in the liquid film. For a given �(h)-dependence,

this balance of pressures determines the equilibrium thickness of the film. The comparison of

Eqs. (5.1) and (5.2) shows that at equilibrium the disjoining pressure is equal to the capillary

pressure:

�(h) = Pc (5.3)

Next, let us consider the force balance per unit length of the contact line, which encircles the

plane-parallel film [14,15]:

� + �f + � = 0 (5.4)

The vectors �, �f and � are shown in Fig. 5.2; f
� is the tension of the upper film surface, which

is different from the liquid�fluid interfacial tension � (as a rule f
� < �), see Eq. (5.5) below.

� is the so called transversal tension which is directed normally to the film surface. The

transversal tension is a linear analogue of the disjoining pressure: � accounts for the excess

interactions across the liquid film in the narrow transition zone between the uniform film and

the bulk liquid phase. (Microscopically this transition zone can be treated as a film of uneven

thickness and a micromechanical expression for � can be derived � see Ref. 15.)  Note that, in
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Fig. 5.2. Sketch of a fluid particle which is attached to a solid surface. A plane-parallel film of

thickness h and radius rc is formed in the zone of attachment; Pin and Pl are the pressures in

the inner fluid and in the outer liquid; � is disjoining pressure; � and �f are surface tensions

of the outer fluid�liquid phase boundary and of the film surface; � is transversal tension.

general, Eq. (5.4) may contain an additional line-tension term, cf. Eq. (2.73), which is usually

very small and is neglected here; see Section 2.3.4 and Eq. (5.31) below. The horizontal and

vertical projections of Eq. (5.4) have the form:

��� cos�
f (5.5)

��� sin� (5.6)

where � is the contact angle. Since cos� < 1, Eq. (5.5) shows that f
� < �. In addition, Eq. (5.6)

states that the transversal tension � counterbalances the normal projection of the surface tension

with respect to the film surface.

To understand deeper the above force balances, we will use a thermodynamic relationship,

���
�

�

h

f
� , (wetting film) (5.7)

which is derived in the next Section 5.1.3. The integration of the latter equation, along with the
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boundary condition ,)(lim �� �

��

hf

h
 yields

� � � ��
�

���

h

f hdhh �� (wetting film) (5.8)

In fact, the integral

� � � ��
�

��

h

hdhhf (5.9)

expresses the work (per unit area) performed against the surface forces to bring the two film

surfaces from an infinite separation to a finite distance h; f(h) has the meaning of excess free

energy per unit area of the thin liquid film. Comparing Eqs. (5.5) and (5.8) one obtains

� �
��

�

)(111cos hfhdh
h

����� �
�

(wetting film) (5.10)

In addition, the combination of Eqs. (5.6) and (5.10) yields

� = � � 2/12)/1(1 �� f�� � (�2f�)1/2 (f /� << 1) (5.11)

Equations (5.10) and (5.11) show that the interaction free energy must be negative, that is f < 0;

otherwise equilibrium attachment of a particle to the interface (Fig. 5.2) is impossible. The

condition f < 0 is often satisfied because at long distances the integrand �(h) in Eq. (5.9) is

negative, which in a final reckoning can give a negative f.

For aqueous films the disjoining pressure is often a superposition of electrostatic repulsion and

van der Waals attraction [16,17]:

3
H

6
)exp()(

h
AhCh
�

� ���� (5.12)

Here C is a constant, � is the Debye screening parameter and AH is the Hamaker constant; see

Section 5.2 for details. A typical shape of the �(h) dependence, determined from Eq. (5.12), is

shown in Fig. 5.3; the portion of the curve on the left of the primary minimum is due to the

short-range Born repulsion, which is not accounted for in Eq. (5.12). One sees that the equation

�(h) = Pc  may have three roots  corresponding to three possible equilibrium states the liquid
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Fig. 5.3. A typical disjoining pressure isotherm, � vs. h, predicted by Eq. (5.12). The intersection
points of the curve �(h) with the horizontal line � = Pc correspond to equilibrium states of
the film: Points 1 and 2 � stable primary and secondary films; Point 3 � unstable equilibrium
state.

film, see Eq. (5.3). Point 1 in Fig. 5.3 corresponds to a film, which is stabilized by the double

layer repulsion; sometimes such a film is called the primary film or common black film. Point 3

corresponds to unstable equilibrium and cannot be observed experimentally. Point 2

corresponds to a very thin film, which is stabilized by the short range repulsion; such a film is

called the secondary film or Newton black film. Transitions from common to Newton black

films are often observed with foam and emulsion films [18-21].

As an example, let us assume that the state of the film in Fig. 5.2 corresponds to Point 1 in Fig.

5.3. Then obviously �(h1) = Pc > 0, i.e. the disjoining pressure is repulsive and keeps the two

film surfaces at an equilibrium distance h1 apart (film of uniform thickness is formed). On the

other hand, the attractive surface forces (the zone of the “secondary minimum” in Fig. 5.3)

prevail in the integral in Eq. (5.9). In such case we have f(h1) < 0 and consequently, the contact

angle � does exists, see Eq. (5.10), and the transversal tension � is a real positive quantity, see
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Fig. 5.4. Schematic presentation of the detailed and membrane models of a thin liquid film: on the left-
and right-hand side, respectively.

Eq. (5.11). Note that in Fig. 5.2 � and � have the opposite directions; indeed, as seen from

Fig. 5.3, and Eqs. (5.9) and (5.11), their values are determined by the predominant repulsion

(for �) and attraction (for �). The fact the directions of � and � are opposite has a crucial

importance for the existence of equilibrium state of an attached particle at an interface. To

demonstrate that let us consider the total balance of the forces exerted on the fluid particle in

Fig. 5.2.

If the particle is small (negligible effect of gravity), then the integral of Pl over the surface of

the fluid particle in Fig. 5.2 is equal to zero. Then the total balance of the forces exerted on the

particle reads [22,23]

�rc
2

 � = 2�rc � (5.13)

i.e. the disjoining pressure �, multiplied by the film area, must be equal to the transversal

tension �, multiplied by the length of the contact line. Thus it turns out that the fluid particle

sticks to the solid surface at its contact line (at the film periphery) where the long-range

attraction (accounted for by �) prevails; on the other hand, the repulsion predominates inside

the film, where � = Pc > 0. The exact balance of these two forces of opposite direction,

expressed by Eq. (5.13), determines the state of equilibrium attachment of the particle to the

interface. Note that the conclusions based on Eq. (5.13) are valid not only for particle�wall

attachment, but also for particle-particle interactions, say for the formation of doublets and



Liquid Films and Interactions between Particle and Surface 191

multiplets (flocs) from drops in emulsions [24].

For larger particles the gravitational force Fg , which represents the difference between the

particle weight and the buoyancy (Archimedes) force, may give a contribution to the force

balance in Eq. (5.13), [22,23]:

�rc
2

 � = 2�rc �  + Fg , Fg � �� g Vp (5.14)

Here �� is the difference between the mass densities of the fluid particle and the outer liquid

phase, g is the acceleration due to gravity and Vp is the volume of the particle.

5.1.3. THERMODYNAMICS OF THIN LIQUID FILMS

First, we consider symmetric thin liquid films, like that depicted in Fig. 5.4. Since such films

have two fluid surfaces, the respective thermodynamic equations sometimes differs from their

analogues for wetting films (Section 5.1.2) by a multiplier 2; these differences will be noted in

the text below. Symmetric films appear between two attached similar drops or bubbles, as well

as in foams. As in Fig. 5.2, Pin is the pressure in the fluid particles and Pl is the pressure in the

outer liquid phase (in the case of foam � that is the liquid in the Plateau borders). The force

balances per unit area of the film surface and per unit length of the contact line (see the left-

hand side of Fig. 5.4) lead again to Eqs. (5.2)�(5.6).

It should be noted that two different, but supplementary, approaches (models) are used in the

macroscopic description of a thin liquid film. These are the “detailed approach”, used until

now, and the “membrane approach”; they are illustrated, respectively, on the left- and right-

hand side of Fig. 5.4. As described above, the “detailed approach” models the film as a liquid

layer of thickness h and surface tension f
� . In contrast, the "membrane approach", treats the

film as a membrane of zero thickness and total tension, �, acting tangentially to the membrane

� see the right-hand side of Fig. 5.4. By making the balance of the forces acting on a plate of

unit width along the y-axis (in Fig. 5.4 the profile of this plate coincides with the z-axis) one

obtains the Rusanov [25] equation:

hPc
f
�� �� 2 (Pc = Pin � Pl) (5.15)
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Equation (5.15) expresses a condition for equivalence between the membrane and detailed

models with respect to the lateral force.

In the framework of the membrane approach the film can be treated as a single surface

phase, whose Gibbs-Duhem equation reads [23,25,26]:

�
�

����

k

i
ii

f dTdsd
1

�� (5.16)

where � is the film tension, T is temperature, sf is excess entropy per unit area of the film, �i

and �i are the adsorption and the chemical potential of the i-th component. The Gibbs-Duhem

equations of the liquid phase (l) and the “inner” phase (in) read

inldnTdsPd i

k

i
i ,,

1
��� �

�

��
��

��
(5.17)

where �

�
s  and �

in  are entropy and number of molecules per unit volume, and P� is pressure in

the respective phase. Since Pc = Pin � Pl , from Eq. (5.17) one can obtain an expression for dPc.

Further, we multiply this expression by h and subtract the result from the Gibbs-Duhem

equation of the film, Eq. (5.16). The result reads

�
�

�����

k

i
iic ddPhdTsd

1

~~
�� (5.18)

where

� � � � kihnnhssss l
iiii

lf ,...,1,~,~ 00
���������

��
(5.19)

An alternative derivation of the same equations is possible, after Toshev and Ivanov [27].

Imagine two equidistant planes separated at a distance h. The volume confined between the two

planes is thought to be filled with the bulk liquid phase “l”. Taking surface excesses with

respect to the bulk phases, one can derive Eqs. (5.18) and (5.19) with is �
~and~  being the

excess surface entropy and adsorption ascribed to the surfaces of this liquid layer. A

comparison between Eqs. (5.18) and (5.16) shows that there is one additional term in Eq.

(5.18), viz. h dPc . It corresponds to one supplementary degree of freedom connected with the
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choice of the parameter h. To specify the model one needs an additional equation to determine

h. For example, let this equation be

0~
1 �� (5.20)

Equation (5.20) requires h to be the thickness of a liquid layer from phase “l”, containing the

same amount of component 1 as the real film. This thickness is called the thermodynamic

thickness of the film [28]. It can be of the order of the real film thickness if component 1 is

chosen in an appropriate way, say, to be the solvent in the film phase.

Combining Eqs. (5.3), (5.18) and (5.20) one obtains [27]

�
�

������

k

i
ii ddhTdsd

2

~~
�� (5.21)

Note that the summation in the latter equation starts from i = 2, and that the number of

differentials in Eqs. (5.16) and (5.21) is the same. A corollary from Eq. (5.21) is the Frumkin

equation [29]

h
kT

���
�

�
��
�

�

�
��

�

��

,...,, 2

(5.22)

For thin liquid films h is a relatively small quantity (h 	 10�5 cm); therefore Eq. (5.22) predicts

a rather weak dependence of the film tension � on the disjoining pressure, �, in equilibrium

thin films. By means of Eqs. (5.3) and (5.15) one can transform Eq. (5.21) to read [28]

i

k

i
i

f dhdTdsd �� �
�

������

2

~~2 (5.23)

From Eq. (5.23) the following useful relations can be derived [27,28]

����
�
�

�
�
�
�

	

kT

f

h
��

�

��

,...,, 2

2 (symmetric film) (5.24)

� � � ��
�

���

h

f hdhh 2
1

�� (symmetric film) (5.25)

Note that the latter two equations differ from the respective relationships for a wetting film,
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Eqs (5.7) and (5.8), with multipliers 2 and 1/2; as already mentioned, this is due to the presence

of two fluid surfaces in the case of a symmetric liquid film. Note also that the above

thermodynamic equations are corollaries from the Gibbs-Duhem equation in the membrane

approach, Eq. (5.16).

The detailed approach, which treats the two film surfaces as separate surface phases

with their own fundamental equations [25,27,30]; thus for a flat symmetric film one postulates

�
�

�����

k

i

f
ii

fff hdANdAdSdTUd
1

,2 �� (5.26)

where A is area; ,fU  fS and f
iN  are excesses of the internal energy, entropy and number of

molecules ascribed to the film surfaces. Compared with the fundamental equation of a simple

surface phase [31], Eq. (5.26) contains an additional term, ��Adh, which takes into account the

dependence of the film surface energy on the film thickness. Equation (5.26) provides an

alternative thermodynamic definition of the disjoining pressure:

�
�
�

�
�
�
�

�
��	

h
U

A

f

�

�1 (5.27)

The thin liquid films formed in foams or emulsions exist in a permanent contact with the bulk

liquid in the Plateau borders, encircling the film. From a macroscopic viewpoint, the boundary

film / Plateau border can be treated as a three-phase contact line: the line, at which the two

surfaces of the Plateau border (the two concave menisci) intersect at the plane of the film, see

the right-hand side of Fig. 5.4. The angle �0, subtended between the two meniscus surfaces,

represents the thin film contact angle corresponding to the membrane approach. The force

balance at each point of the contact line is given by the Neumann-Young equation, Eq. (2.73)

with �w = �, and �u = �v = �. The effect of the line tension, �, can be also taken into account,

see Eq. (2.70). Thus for a symmetrical flat film with circular contact line (Fig. 5.4) one obtains

[14]

0
0

cos2 ��
�

� ��

r
(5.28)

where r0 is the radius of the respective contact line.
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Fig. 5.5. Schematic presentation of the force balances in each point of the two contact lines at the
boundary between a spherical film and the Plateau border, see Eq. (5.32); after Refs. [23,32].

There are two film surfaces and two contact lines in the detailed approach, see the left-hand

side of Fig. 5.4. They can be treated thermodynamically as linear phases; further, an one-

dimensional analogue of Eq. (5.26) can be postulated [14]:

hdNdLdSdTUd
i

L
ii

LL
��� ���� �~2 (5.29)

Here UL, SL and L
iN  are linear excesses, �~  is the line tension in the detailed approach and

�
�
�

�
�
�
�

�
�

h
U

L

L

�

�
�

1 (5.30)

is a thermodynamical definition of the transversal tension, which is apparently an one-

dimensional analogue of the disjoining pressure � � cf. Eqs. (5.27) and (5.30).

The vectorial force balance per unit length of the contact lines of a symmetric film, with

account for the line tension effect, is [14]

� + �f + � + �� = 0, | �� | = cr/~
� (5.31)
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Fig. 5.6. Operation principle of the Film Trapping Technique. (A) A photograph of leukemic Jurkat cell
trapped in a foam (air-water-air) film. The cell is observed in reflected monochromatic light; a
pattern of alternating dark and bright interference fringes appears. (B) Sketch of the cell
trapped in the film. The inner set of fringes corresponds to the region of contact of the cell
with the protein adsorption layer (C). From the radii of the interference fringes one can restore
the shapes of the liquid meniscus and the cell, and calculate the contact angle, �, the cell
membrane tension, �C, and the tension of the cell-water-air film, � ; from Ivanov et al. [12].
(TCR = T cell receptor; mAb = monoclonal antibody)



Liquid Films and Interactions between Particle and Surface 197

see Fig. 5.4; the vector ��, expressing the line tension effect, is directed toward the center of

curvature of the contact line, see Chapter 2 for details. In the case of a curved or non-symmetric

film (film formed between two different fluid phases) Eq. (5.31) can be generalized as follows

[23]:

i�  + f
i� + �i + �

� i  = 0, i = 1,2 (5.32)

see Fig. 5.5 for the notation. Equation (5.32) represents a generalization of the Neumann-

Young equation, Eq. (2.73), expressing the vectorial balance of forces at each point of the

respective contact line.

Equation (5.32) finds applications for determining contact angles of liquid films, which in their

own turn bring information about the interaction energy per unit area of the film, see Eq. 5.10.

Experimentally, information about the shape of fluid interfaces can be obtained by means of

interferometric techniques and subsequent theoretical analysis of the interference pattern [33].

This approach can be applied also to biological cells. For example, as illustrated in Fig. 5.6,

human T cells have been trapped in a liquid film, whose surfaces represent adsorption

monolayers of monoclonal antibodies acting as specific ligands for the receptors expressed on

the cell surface. From the measured contact angle the cell�monolayer adhesive energy was

determined and information about the ligand�receptor interaction has been obtained [12].

5.1.4. DERJAGUIN APPROXIMATION FOR FILMS OF UNEVEN THICKNESS

In the previous sections of this chapter we considered planar liquid films. Here we present a

popular approximate approach, proposed by Derjaguin [34], which allows one to calculate the

interaction between a particle and an interface across a film of nonuniform thickness, like that

depicted in Fig. 5.1b, assuming that the disjoining pressure of a plane-parallel film is known.

Following the derivation by Derjaguin [2, 34], let us consider the zone of contact between a

particle and an interface; in general, the latter is curved, see Fig. 5.7a. The “interface” could be

the surface of another particle. The Derjaguin approximation is applicable to calculate the

interaction between any couple of colloidal particles, either solid, liquid or gas bubbles. The

only assumption is that the characteristic range of action of the surface forces is much smaller

than any of the surface curvature radii in the zone of contact.
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Fig. 5.7. (a) The zone of contact of two macroscopic bodies; h0 is the shortest surface-to-surface
distance. (b) The directions of the principle curvatures of the two surfaces, in general, subtend
some angle � .

The length of the segment O1O2 in Fig. 5.7a, which is the closest distance between the two

surfaces, is denoted by h0. The z-axis is oriented along the segment O1O2. In the zone of contact

the shapes of the two surfaces can be approximated with paraboloids [2, 34]:

2
112

12
112

1
1 ycxcz ��� , 2

222
12

222
1

2 ycxcz ��� , (5.33)

Here c1 and 1c�  are the principal curvatures of the first surface in the point O1; likewise, c2 and

2c�  are the principal curvatures of the second surface in the point O2; the coordinate plane xiyi

passes through the point Oi, i = 1,2. The axes xi and yi are oriented along the principal

directions of the curved surface Si in the point Oi. In general, the directions of the principle

curvatures of the two surfaces subtend some angle �  (0 	 � 	 180
), see Fig. 5.7b:

x2 = x1 cos�  + y1 sin� , y2 = �x1 sin�  + y1 cos� (5.34)

The local width of the gap between the two surfaces is (Fig. 5.7a)

h = h0 + z1 + z2 (5.35)

Combining Eqs. (5.33)�(5.35) one obtains [2, 34]

h = h0 + 11
2
12

12
12

1 yxCyBxA �� (5.36)
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where A, B and C are coefficients independent of x1 and y1:

A = c1+ c2 cos2
� + 2c� sin2

� (5.37)

B = 1c�  + c2 sin2
� + 2c� cos2

� (5.38)

C = (c2 � 2c� ) cos� sin� (5.39)

Equation (5.36) expresses h(x1, y1) as a bilinear form; the latter, as known from the linear

algebra, can be represented as a quadratic form by means of a special coordinate transformation

(x1, y1) � (x, y):

h = h0 + 2
2
12

2
1 ycxc �� (5.40)

This is equivalent to bringing of the symmetric matrix (tensor) of the bilinear form into

diagonal form:

�
�
�

�
�
�
�

�

BC
CA

2
1

2
1

2
1

2
1

    �    �
�
�

�
�
�
�

�

�c
c

2
1

2
1

0
0

(5.41)

Since the determinant of a tensor is invariant with respect to coordinate transformations, one

can write

c c�  = AB � C2 (5.42)

Further, we assume that the interaction free energy (due to the surface forces) per unit area of a

plane-parallel film of thickness h is known: this is the function f(h) defined by Eq. (5.9). The

“core” of the Derjaguin approximation is the assumption that the energy of interaction, U,

between the two bodies (I and II in Fig. 5.7a) across the film is given by the expression

dydxyxhfU ��� )),(( (5.43)

where h = h0 + 2
2
12

2
1 ycxc �� . Further, let us introduce polar coordinates in the plane xy:

�
� cos
c

x � , �
� cos
c

y
�

� (5.44)

Since h depends only on �, Eq. (4.43) acquires the form
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� �
�

�
�

�

���
�

2

0 0

))((
cc
ddhfU (h = h0 + 2

2
1
� ) (5.45)

Integrating with respect to � and using the relationship dh = � d� one finally obtains [2, 34]

� � � ��
�

�

0

,2
0

h

dhhf
E

hU � (interaction energy) (5.46)

� � � � ��
2

2121
2

21212211 cossin ccccccccccccccE �������������� (5.47)

The last expression is obtained by substitution of Eqs (5.37)�(5.39) into Eq. (5.42). We recall

that � is the angle subtended between the directions of the principle curvatures of the two

approaching surfaces. It has been established, both experimentally [3] and theoretically [35],

that Eq. (5.46) provides a good approximation for the interaction energy in the range of its

validity. The interaction force between two bodies, separated at a surface-to-surface distance h0,

can be obtained by differentiation of Eq. (5.46):

� � )(2
0

0
0 hf

Eh
UhF �

�
�

�
�� (interaction force) (5.48)

Next, we consider various cases of special geometry:

Sphere�Wall: This is the configuration depicted in Fig. 5.1b � particle of radius R

situated at a surface-to-surface distance h0 from a planar solid surface. In such a case c1 = 1c�  =

1/R, whereas c2 = 2c�  = 0. Then from Eqs. (5.46)�(5.47) one deduces

� � � ��
�

�

0

,20
h

dhhfRhU � (sphere�wall) (5.49)

Truncated Sphere � Wall: For this configuration, see Fig. 5.1a, the interaction across the

plane-parallel film of radius rc should be also taken into account [36-39]:

� � � � )(2 0
2

0

0

hfrdhhfRhU c
h

�� �� �
�

(truncated sphere � wall) (5.50)

Two Spheres: For two spherical particles of radii R1 and R2 separated at a surface-to-

surface distance h0 one has c1 = 1c�  = 1/R1 and c2 = 2c�  =  1/R2. Then Eqs. (5.46)�(5.47) yield
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� � � �dhhf
RR
RRhU

h
�
�

�

�

021

21
0

2� (two spheres) (5.51)

In the limit R1�R and R2�� Eq. (5.51) reduces to Eq. (5.49), as it should be expected.

Two Crossed Cylinders: For two infinitely long cylinders (rods) of radii r1 and r2, which

are separated at a transversal surface-to-surface distance h0, and whose axes subtend an angle

�, one has c1 = 1/r1, 1c�  = 0, c2 = 1/r2 and 2c�  = 0. Then Eqs. (5.46)�(5.47) lead to [2]

� � � �dhhf
rr

hU
h
�
�

�

0
sin

2 21
0

�

�

(two cylinders) (5.52)

The latter equation is often used to interpret data obtained by means of the surface force

apparatus, which operates with crossed cylinders [3]. For parallel cylinders, that is for ��0,

Eq. (5.52) gives U��; this divergence is not surprising because the contact zone between two

parallel cylinders is infinitely long, whereas the interaction energy per unit length is finite. In

the surface force apparatus usually � = 90
 and then sin� = 1.

The interaction force can be calculated by a mere differentiation of Eqs. (5.49)�(5.52) in

accordance with Eq. (5.48).

The Derjaguin approximation is applicable to any type of force law (attractive, repulsive,

oscillatory) if only the range of the forces is much smaller than the particle radii. Moreover, it is

applicable to any kind of surface force, irrespective of its physical origin: van der Waals,

electrostatic, steric, oscillatory-structural, etc. forces, which are described in the next section.

5.2. INTERACTIONS IN THIN LIQUID FILMS

5.2.1. OVERVIEW OF THE TYPES OF SURFACE FORCES

As already mentioned, if a liquid film is sufficiently thin (thinner than c.a. 100 nm) the

interaction of the two neighboring phases across the film is not negligible. The resulting

disjoining pressure, �(h), may contain contributions from various kinds of molecular

interactions.

The first successful theoretical model of the interactions in liquid films and the stability of
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colloidal dispersions was created by Derjaguin & Landau [16], and Verwey & Overbeek [17]; it

is often termed “DLVO theory” after the names of the authors. This model assumes that the

disjoining pressure is a superposition of electrostatic repulsion and van der Waals attraction,

see Eq. (5.12), Fig. 5.3 and Sections 5.2.2 and 5.2.4 below. In many cases this is the correct

physical picture and the DLVO theory provides a quantitative description of the respective

effects and phenomena.

Subsequent studies, both experimental and theoretical, revealed the existence of other surface

forces, different from the conventional van der Waals and electrostatic (double layer)

interactions. Such forces appear as deviations from the DLVO theory and are sometimes called

“non-DLVO surface forces” [3]. An example is the hydrophobic attraction which brings about

instability of aqueous films spread on a hydrophobic surface, see Section 5.2.3. Another

example is the hydration repulsion, which appears as a considerable deviation from the DLVO

theory in very thin (h < 10 nm) films from electrolyte solutions, see Section 5.2.5.

Oscillations of the surface force with the surface-to-surface distance were first detected in films

from electrolyte solutions sandwiched between solid surfaces [3, 40]. This oscillatory

structural force appears also in thin liquid films containing small colloidal particles like

surfactant micelles, polymer coils, protein macromolecules, latex or silica particles [41]. For

larger particle volume fractions the oscillatory force is found to stabilize thin films and

dispersions, whereas at low particle concentrations it degenerates into the depletion attraction,

which has the opposite effect, see Section 5.2.7.

When the surfaces of the liquid film are covered with adsorption layers form nonionic

surfactants, like those having polyoxiethylene moieties, the overlap of the formed polymer

brushes give rise to a steric interaction [3, 42], which is reviewed in Section 5.2.8.

The surfactant adsorption monolayers on liquid interfaces and the lipid lamellar membranes are

involved in a thermally exited motion, which manifests itself as fluctuation capillary waves.

When such two interfaces approach each other, the overlap of the interfacial corrugations

causes a kind of steric interaction (though a short range one), termed the fluctuation force [3],

see Section 5.2.9.

The approach of a fluid particle (emulsion drop or gas bubble) to a phase boundary might be



Liquid Films and Interactions between Particle and Surface 203

accompanied with interfacial deformations: dilatation and bending. The latter also do

contribute to the overall particle�surface interaction, see Section 5.2.10. In a final reckoning,

the total energy of interaction between a particle and a surface, U, can be expressed as a sum of

contributions of different origin: from the interfacial dilatation and bending, from the van der

Waals, electrostatic, hydration, oscillatory-structural, steric, etc. surface forces as follows [43]:

U = Udil + Ubend + Uvw + Uel + Uhydr + Uosc + Ust + 


 (5.53)

Below we present theoretical expressions for calculating the various terms in the right-hand

side of Eq. (5.53). In addition, in the next Chapter 6 we consider also the surface forces of

hydrodynamic origin, which are due to the viscous dissipation of energy in the narrow gap

between two approaching surfaces in liquid (Section 6.2).

In summary, below in this chapter we present a brief description of the various kinds of surface

forces. The reader could find more details in the specialized literature on surface forces and

thin liquid films [2, 3, 42-45]

5.2.2. VAN DER WAALS SURFACE FORCE

The van der Waals forces represent an averaged dipole-dipole interaction, which is a

superposition of three contributions: (i) orientation interaction between two permanent dipoles:

effect of Keesom [46]; (ii) induction interaction between one permanent dipole and one

induced dipole: effect of Debye [47]; (iii) dispersion interaction between two induced dipoles:

effect of London [48]. The energy of van der Waals interaction between molecules i and j

obeys the law [49]

� �u r
rij

ij
� �

�

6 (5.54)

where uij is the potential energy of interaction, r is the distance between the two molecules and

�ij is a constant characterizing the interaction. In the case of two molecules in a gas phase one

has [3, 49]
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(5.55)

where pi and �0i are molecular dipole moment and electronic polarizability, hP = 6.63�10�34 J.s

is the Planck constant and �i can be interpreted as the orbiting frequency of the electron in the

Bohr atom; see Refs. [3, 50] for details.

The van der Waals interaction between two macroscopic bodies can be found by integration of

Eq. (5.54) over all couples of interacting molecules followed by subtraction of the interaction

energy at infinite separation between the bodies. The result of integration depends on the

geometry of the system. For a plane-parallel film located between two semiinfinite phases the

van der Waals interaction energy per unit area and the respective disjoining pressure, stemming

from Eq. (5.54), are [51]:

3
Hvw

vw2
H

vw 6
,

12 h
A

h
f

h
Af

��

�

�
������� (5.56)

where, as usual, h is the thickness of the film and AH is the Hamaker constant [44, 51]; about

the calculation of AH – see Eqs. (5.65)�(5.74) below. By integration over all couples of

interacting molecules Hamaker [51] has derived the following expression for the energy of van

der Waals interaction between two spheres of radii R1 and R2:

� � �
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(5.57)

where

1/,2/ 1210 ��� RRyRhx (5.58)

as before, h0 is the shortest surface-to-surface distance. For x << 1 Eq. (5.57) reduces to

� �
� � 0

H

21

21H
0vw 12

2
112 h

A
RR
RR

xy
yAhU

�

�

�

��

�

�� (5.59)

Equation (5.59) can be also derived by substituting fvw(h) from Eq. (5.56) into Derjaguin

approximation (5.51). It is worthwhile noting, that the logarithmic term in Eq. (5.57) can be

neglected only if x << 1. For example, even when x = 5 
�

 10�3, the contribution of the
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logarithmic term amounts to about 10% of the result (for y = 1); consequently, for larger values

of x this term must be retained [44].

For the configuration sphere � wall, which is depicted in Fig. 5.1b, an expression for the

interaction energy can be obtained setting R1 � � and R2 = R in Eqs. (5.57) and (5.58):

� � ��
�

�
��
�

�

�
�

�
��	

0

0

00
0vw 2

ln2
2

22
12 hR

h
hR

R
h
RAhU H (5.60)

Alternatively, substituting fvw(h) from Eq. (5.56) into the Derjaguin approximated formula

(5.49) one derives

� �
0

0vw
2

12 h
RAhU H

�� (5.61)

which coincides with the leading term in Eq. (5.60) for h0/(2R) << 1.

Next, let us consider the configuration truncated sphere � wall, which is depicted in Fig. 5.1a.

An expression for the interaction energy in this case has been derived by Danov et al. [37]:
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2
ln222

12
(5.62)

where l � R + (R2 � 2
cr )1/2. Alternatively, substituting fvw(h) from Eq. (5.56) into Derjaguin

approximated formula (5.50) one obtains
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12 h

r
h
RAhU cH (5.63)

Obviously, the latter approximate expression contains the two leading terms in the right-hand

side of Eq. (5.62) for h0�0.

In the case of film between two identical deformed emulsion droplets, like those depicted in

Fig. 3.5 with a = R, r = rc and h = h0, the respective droplet-droplet interaction energy can be

expressed in the form [37]
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RAhU ccH (h0, rc << R) (5.64)
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Equation (5.64) represents a truncated series expansion; the exact formula, which is rather long,

can be found in Ref. [37]. Expressions for Uvw for other geometrical configurations are also

available [52].

Further, we consider expressions for calculating the Hamaker constant AH, which enters Eqs.

(5.56)�(5.64). For that purpose two approaches have been developed: the microscopic theory

due to Hamaker [51] and the macroscopic theory due to Lifshitz [53].

Microscopic theory: its basic assumption is that the van der Waals interaction is pair-

wise additive, and consequently, the total interaction energy between two bodies can be

obtained by interaction over all couples of constituent molecules. Thus, for the interaction

between two semiinfinite phases, composed from components i and j, across a plane-parallel

gap of vacuum, one obtains Eq. (5.56) with AH = Aij, where Aij is expressed as follows

ijjiijA ����
2

� (5.65)

�i and �j are the densities of the respective phases and �ij is a molecular parameter defined by

Eq. (5.55). Usually, the dimension of �i and �j is expressed in molecules per cm3, and then AH

and Aij have a dimension of energy.

For a plane-parallel film from component 3 between two semiinfinite phases from components

1 and 2 the microscopic approach gives again Eq. (5.56), but this time the compound Hamaker

constant is determined by the expression [44]

23131233132 AAAAAAH ����� (5.66)

Here Aij (i,j = 1,2,3) is determined by Eq. (5.65). If the film is “filled” with vacuum, then �3 = 0

and Eq. (5.66) reduces to AH = A12, as it could be expected. If the Hamaker constants of the

symmetric films, viz. Aii and Ajj, are known, one can estimate Aij (i 
�

 j) by using the

approximation of Hamaker

� � 2/1
jjiiij AAA � (5.67)

If components 1 and 2 are identical, AH is positive. Therefore, the van der Waals interaction

between identical bodies is attractive across any medium. Besides, two dense bodies (even if

nonidentical) will attract each other when placed in medium 3 of low density (gas, vacuum).
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Fig. 5.8. Sketch of two multilayered bodies interacting across a medium 0; the layers are counted from
the central film 0 outward to the left (L) and right (R).

On the other hand, if the phase in the middle (component 3) has an intermediate Hamaker

constant between those of bodies 1 and 2 (say A11 < A33 < A22), then the compound Hamaker

constant AH can be negative and the van der Waals disjoining pressure can be repulsive

(positive). Such is the case of an aqueous film between mercury and gas [54], or liquid

hydrocarbon film on alumina [55] and quartz [56]. It is worthwhile noting that the liquid

helium climbs up the walls of containers because of the repulsive van der Waals force across

the wetting helium film [3, 57, 58].

Equation (5.66) can be generalized for multilayered films. For example, two surfactant

adsorption monolayers (or lipid bilayers) interacting across water film can be modeled as a

multilayered structure: one layer for the headgroup region, other layer for the hydrocarbon tails,

another layer for the aqueous core of the film, etc.). There is a general formula for the

interaction between two such multilayered structures (Fig. 5.8) stemming from the microscopic

approach [52]:

f
A i j

h
A i j A A A A

ijj

N

i

N

i j i j i j i j

RL

vw � � � � � �

��

� � � �
��

( , )
, ( , ) , , , ,12 2

11
1 1 1 1

�

(5.68)

where NL and NR denote the number of layers on the left and on the right from the central layer,

the latter denoted by index "0" � see Fig. 5.8 for the notation; Ai,j (= Aij) is defined by

Eq. (5.65). Equation (5.68) reduces to Eq. (5.56) for NL = NR = 1 and  h11 = h.



Chapter 5208

Macroscopic theory: An alternative approach to the calculation of the Hamaker constant

AH in condensed phases is provided by the Lifshitz theory [53, 57], which is not limited by the

assumption for pairwise additivity of the van der Waals interaction, see also Refs. [2, 3, 52].

The Lifshitz theory treats each phase as a continuous medium characterized by a given uniform

dielectric permittivity, which is dependent on the frequency, �, of the propagating electro-

magnetic waves. A good knowledge of quantum field theory is required to understand the

Lifshitz theory of the van der Waals interaction between macroscopic bodies. Nevertheless, the

final results of this theory can be represented in a form convenient for application. For the

symmetric configuration of two identical phases i interacting across a medium j the

macroscopic theory provides the expression [3]

� �
� � 2322
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where �i and �j are the dielectric constants of phases i and j; ni and nj are the respective

refractive indices for visible light; as usual, hP is the Planck constant; �e is the main electronic

absorption frequency which is 15100.3 �� Hz for water and the most organic liquids [3]. The

first term in the right-hand side of Eq. (5.69), )0( ��

ijiA , the so called zero frequency term,

expresses the contribution of the orientation and induction interactions. Indeed, these two

contributions to the van der Waals force represent electrostatic effects. Equation (5.69) shows

that this zero-frequency term can never exceed 4
3 kT � 3 � 10�21 J.  The last term in Eq. (5.69),

)0( ��

ijiA , accounts for the dispersion interaction. If the two phases, i and j, have comparable

densities (as it is for emulsion systems, say oil�water�oil), then )0( ��

ijiA  and )0( ��

ijiA  are

comparable by magnitude. If one of the phases, i or j, has low density (gas, vacuum), as a rule
)0( ��

ijiA >> )0( ��

ijiA ; in this respect the macroscopic and microscopic theories often give different

predictions for the value of AH.

For the more general configuration of phases i and k, interacting across a film from phase j, the

macroscopic (Lifshitz) theory provides the following expression [3]
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Upon substitution k = i Eq. (5.70) reduces to Eq. (5.69). Equation (5.70) can be simplified if the

following approximate relationship is satisfied:

� � � � � � � �
2/12122212221222122
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��
� ��� jkjijkji nnnnnnnn , (5.71)

that is the arithmetic and geometric mean of the respective quantities are approximately equal.

Substitution of Eq. (5.71) into (5.70) yields a more compact expression:
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Comparing Eqs. (5.69) and (5.72) one obtains the following combining relations:

� � 2/1)0()0()0( ���

�
���

kjkijiijk AAA (5.73)

� � 2/1)0()0()0( ���

�
���

kjkijiijk AAA (5.74)

The latter two equations show that according to the macroscopic theory the Hamaker

approximation, Eq. (5.67), holds separately for the zero-frequency term, )0( ��

ijkA  (orientation +

induction interactions) and for the dispersion interaction term, )0( ��

ijkA .

Effect of electromagnetic retardation. The asymptotic behavior of the dispersion

interaction at large intermolecular separations does not obey Eq. (5.54); instead uij � 1/r7 due to

the electromagnetic retardation effect established by Casimir and Polder [59]. Experimentally

this effect has been first detected by Derjaguin and Abrikossova [60] in measurements of the

interaction between two quartz glass surfaces in the distance range 100�400 nm. Various

expressions have been proposed to account for this effect in the Hamaker constant; one

convenient formula for the case of symmetric films has been derived by Prieve and Russel, see



Chapter 5210

Ref. [42]:
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where, as usual, h is the film thickness; the dimensionless thickness h~  is defined by the

expression

� �
c

hnnnh jij
e2/122 2~ ��

��  , (5.76)

where c = 3.0 � 1010 cm/s is the speed of light; the integral in Eq. (5.75) is to be solved

numerically; for estimates one can use the approximate interpolating formula [42]:
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For small thickness )0( ��

ijiA , as given by Eqs. (5.75), is constant, whereas for large thickness h

one obtains )0( ��

ijiA � h��. For additional information about the electromagnetic retardation

effect � see Refs. [3, 42, 52]. It is interesting to note that this relativistic effect essentially

influences the critical thickness of rupture of foam and emulsion films, see Section 6.2 below.

Screening of the orientation and induction interactions in electrolyte solutions. As

already mentioned, the orientation and induction interactions (unlike the dispersion interaction)

are electrostatic effects; so, they are not subjected to electromagnetic retardation. Instead, they

are influenced by the Debye screening due to the presence of ions in the aqueous phase. Thus

for the interaction across an electrolyte solution the screened Hamaker constant is given by the

expression [50]

)0(2)0( )2( ���

��
���

� AehAA h
H (5.78)

where A(�=0) denotes the contribution of orientation and induction interaction into the Hamaker

constant in the absence of any electrolyte; A(�>0) is the contribution of the dispersion

interaction; � is the Debye screening parameter defined by Eqs. (1.56) and (1.64). Additional

information about this effect can be found in Refs. [3, 42, 50].
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5.2.3. LONG-RANGE HYDROPHOBIC SURFACE FORCE

The experiment sometimes gives values of the Hamaker constant, which are markedly larger

than the values predicted by the theory. This fact could be attributed to the action of a strong

attractive hydrophobic force, which is found to appear across thin aqueous films sandwiched

between two hydrophobic surfaces [61-63].  The experiments showed that the nature of the

hydrophobic force is different from the van der Waals interaction [61-69]. It turns out that the

hydrophobic interaction decays exponentially with the increase of the film thickness, h.  The

hydrophobic free energy per unit area of the film can be described by means of the equation [3]

0/
chydrophobi 2 �

�
hef �

�� (5.79)

where typically � = 10-50 mJ/m2, and �0 = 1-2 nm in the range 0 < h < 10 nm.  Larger decay

length, �0 = 12-16 nm, was reported by Christenson et al. [69] for the range 20 nm < h < 90

nm. This long-ranged attraction entirely dominates over the van der Waals forces. The fact that

the hydrophobic attraction can exist at high electrolyte concentrations, of the order of 1 M,

means that this force cannot have electrostatic origin [69-74]. In practice, this attractive

interaction leads to a rapid coagulation of hydrophobic particles in water [75, 76] and to

rupturing of water films spread on hydrophobic surfaces [77]. It can play a role in the adhesion

and fusion of lipid bilayers and biomembranes [78]. The hydrophobic interaction can be

completely suppressed if the adsorption of surfactant, dissolved in the aqueous phase, converts

the surfaces from hydrophobic into hydrophilic.

There is no generally accepted explanation of the hydrophobic force [79]. One of the possible

mechanisms is that an orientational ordering, propagated by hydrogen bounds in water and

other associated liquids, could be the main underlying factor [3, 80]. Another hypothesis for the

physical origin of the hydrophobic force considers a possible role of formation of gaseous

capillary bridges between the two hydrophobic surfaces [65, 3, 72], see Fig. 2.6a. In this case

the hydrophobic force would be a kind of capillary-bridge force; see Chapter 11 below. Such

bridges could appear spontaneously, by nucleation (spontaneous dewetting), when the distance

between the two surfaces becomes smaller than a certain threshold value, of the order of several

hundred nanometers, see Table 11.2 below. Gaseous bridges could appear even if there is no

dissolved gas in the water phase; the pressure inside a bridge can be as low as the equilibrium
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vapor pressure of water (23.8 mm Hg at 25
C) owing to the high interfacial curvature of

nodoid-shaped bridges, see Chapter 11. A number of recent studies [81-88] provide evidence in

support of the capillary-bridge origin of the long-range hydrophobic surface force. In particular,

the observation of “steps” in the experimental data was interpreted as an indication for separate

acts of bridge nucleation [87].

5.2.4. ELECTROSTATIC SURFACE FORCE

The electrostatic (double layer) interactions across an aqueous film are due to the overlap of the

double electric layers formed at two charged interfaces. The surface charge can be due to

dissociation of surface ionizable groups or to the adsorption of ionic surfactants (Fig. 1.4) and

polyelectrolytes [2,3]. Note however, that sometimes electrostatic repulsion is observed even

between interfaces covered by adsorption monolayers of nonionic surfactants [89-92].

First, let us consider the electrostatic (double layer) interaction between two identical charged

plane parallel surfaces across a solution of an electrolyte (Fig. 5.9). If the separation between

the two planes is very large, the number concentration of both counterions and coions would be

equal to its bulk value, n0, in the middle of the film. However, at finite separation, h, between

the surfaces the two electric double layers overlap and the counterion and coion concentrations

in the middle of the film, n1m and n2m, are not equal. As pointed out by Langmuir [93], the

electrostatic disjoining pressure, �el, can be identified with the excess osmotic pressure in the

middle of the film:

� �021el 2nnnTk mm ���� (5.80)

One can deduce Eq. (5.80) starting from a more general definition of disjoining pressure

[2, 23]:

� = PN � Pbulk (5.81)

where PN is the normal (with respect to the film surface) component of the pressure tensor P

and Pbulk is the pressure in the bulk of the electrolyte solution. The condition for mechanical

equilibrium, ��P = 0, yields �PN/�z = 0, that is PN = const. across the film; the z-axis is directed
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Fig. 5.9. (a) Schematic presentation of a liquid film from electrolyte solution between two identical
charged surfaces; the film is equilibrated with the bulk solution. (b) Distribution �(z) of the
electric potential across the liquid film (the continuous line): �m is the minimum value of �(z)
in the middle of the film; the dashed lines show the electric potential distribution created by
the respective charged surfaces in contact with a semiinfinite electrolyte solution.

perpendicular to the film surfaces, Fig. 5.9a. Hence �, defined by Eq. (5.81), has a constant

value for a given liquid film at a given thickness.

For a liquid film from electrolyte solution one can use Eq. (1.17) to express PN :
2

o 8
)( �

�

�
�
�

�
��	

dz
dzPPP zzN
�

�

� (5.82)

where, as usual, �(z) is the potential of the electric field, � is the dielectric permittivity of the

solution, Po(z) is the pressure in a uniform phase, which is in chemical equilibrium with the

bulk electrolyte solution and has the same composition as the film at level z. Considering the

electrolyte solution as an ideal solution, and using the known expression for the osmotic

pressure, we obtain

Po(z) � Pbulk = kT [n1(z) + n2(z) � 2n0] (5.83)

where n1(z) and n2(z) are local concentrations of the counterions and coions inside the film. The

combination of Eqs. (5.81)�(5.83) yields
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�el = kT [n1(z) + n2(z) � 2n0] � 
2

8
�
�

�
�
�

�

dz
d�

�

� (5.84)

Equation (5.84) represents a general definition for the electrostatic component of disjoining

pressure, which is valid for symmetric and non-symmetric electrolytes, as well as for identical

and nonidentical film surfaces. The same equation was derived by Derjaguin [44] in a different,

thermodynamic manner.

Note that �el, defined by Eq. (5.84), must be constant, i.e. independent of the coordinate z. To

check that one can use the equations of Boltzmann and Poisson:

ni(z) = n0 exp[�Zie�(z)/kT] (5.85)

���

i
ii zenZ

dz
d )(4

2

2

�

�� (5.86)

Let us multiply Eq. (5.86) with d�/dz, substitute ni(z) from Eq. (5.85) and integrate with

respect to z; the result can be presented in the form

2

8
�
�

�
�
�

�

dz
d�

�

�
� kT �

i
i zn )(  = const. (5.87)

The latter equation, along with Eq. (5.84), proves the constancy of �el across the film.

If the film has identical surfaces, the electric potential has an extremum in the midplane of the

film, (d�/dz)z=0 = 0, see Fig. 5.9b. Then from Eq. (5.87) one obtains

2

8
�
�

�
�
�

�

dz
d�

�

�
� kT [n1(z) + n2(z)] =  � kT (n1m + n2m) (5.88)

where nim � ni(0), i = 1,2. One can check that the substitution of Eq. (5.88) into Eq. (5.84)

yields the Langmuir expression for �el, that is Eq. (5.80).

To obtain the dependence of �el on the film thickness h, one has to first determine the

dependence of n1m and n2m on h by solving the Poisson-Boltzmann equation, and then to

substitute the result in the definition (5.80). This was done rigorously by Derjaguin and Landau

[16], who obtained an equation in terms of elliptic integrals, see also Refs. [2, 44]. However,
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for applications it is much more convenient to use the asymptotic form of this expression:

�el(h) � C exp(��h) for   exp(��h) << 1 (5.89)

where C is a constant independent of h; as usual, � is the Debye screening parameter. The

constant C was determined by Verwey and Overbeek [17] in the following way.

Let us consider a film of two identical surfaces and let us deal with a solution of symmetric

electrolyte: Z1 = �Z2 = Z. Combining the Boltzmann equation (5.85) with Eq. (5.80), and

expanding in series, one obtains

�el = 2n0kT �
�

�
�
�

�
��

	



�
�


 1cosh
kT

Ze m�
  �  n0kT 

2

�
�

�
�
�

�

kT
Ze m�

(5.90)

where �m � �(0) is the potential in the middle of the film (Fig. 5.9b), which is assumed to be

small:
2

�
�

�
�
�

�

kT
Ze m�

 << 1 (5.91)

Note that we have set � = 0 in the bulk of solution, see Eq. (5.85); hence small �m means a

weak overlap of the two double electric layers in the middle of the film. In such case one can

use the superposition approximation, �m � 2�1, that is the potential in the middle of the film is

equal to two times the potential at a distance h/2 from a single surface, see Fig. 5.9b for the

notation. Since �1 is also a small quantity, with the help of Eq. (1.65) one obtains

�m � 2�1 = �
�

�
�
�

�
��

�

�
�
�

�

2
exp

4
tanh8 h

kT
Ze

Ze
kT s �� (5.92)

where �s is the value of the electric potential at the surface of the film. The substitution of Eq.

(5.92) into Eq. (5.90) yields [17]

)exp(
4

tanh64)(
2

0el h
kT
eZ

Tknh s
�

�
��

�

�
�
�

�
�	 for   exp(��h) << 1 (5.93)

By integration of Eq. (5.93) one can derive expressions for the free energy (per unit area) due to

the electrostatic interaction, fel(h), as well as the interaction energy between two bodies, Uel(h0),
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with the help of Eqs. (5.9) and (5.49)�(5.52). It is interesting to note, that when �s is large

enough, the hyperbolic tangent in Eq. (5.93) is identically 1 and �el (as well as fel and Uel)

becomes independent of the surface potential (or charge).

Equation (5.93) can be generalized for the case of 2:1 electrolyte (divalent counterion) and 1:2

electrolyte (divalent coion) [94]:

� � )exp(
4

tanh432
2

:
2el h

v
Tkn ji

����
�

�
��
�

�
�	 (5.94)

where n(2) is the concentration of the divalent ions, the subscript "i:j" takes value "2:1" or "1:2",

and
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Equation (5.93) can be generalized also for the case of two non-identically charged interfaces

of surface potentials �s1 and �s2 for Z:Z electrolytes [2]

� � 2,1,
4

tanh,)exp(64 210el ��
�
�

�
�
�
�

�
�	�
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eZ

hTknh sk
k

�
���� (5.96)

Equations (5.93)�(5.96) are valid for both low and high surface potentials, if only

exp(��h) << 1. The comparison of these equations with Eq. (5.89) allow one to determine the

parameter C for each specific system. In addition, the expression for the total interaction energy

U = Uvw + Uel can be used to predict the critical electrolyte concentration for coagulation in a

colloid, see e.g. Ref. [3, 44]. Likewise, one can determine the critical concentration of

electrolyte which is needed for colloid particles to adhere to an interface with the same sign of

the surface charge.

5.2.5. REPULSIVE HYDRATION FORCE

The DLVO theory predicts that the height of the electrostatic barrier (see Fig. 5.3) decreases

with the increase of the electrolyte concentration in solution. In other words, the added

electrolyte suppresses the electrostatic repulsion. In contrast, the experiment [95-98] shows that

sometimes at higher electrolyte concentrations  (above c.a. 10�3 M)  a strong repulsive force is
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Fig. 5.10. (a) Theoretical dependence of F/R � 2�f on the film thickness h for various concentrations of
KCl, denoted in the curves. For all curves the surface potential is �s = �128 mV, the
temperature is 298 K and the excluded volume per ion is v = 1.2 � 10�27 m3; results from Ref.
[100].

detected, which completely dominates the effect of the van der Waals attraction at short

distances (h < 10 nm), see Fig. 5.10. This repulsive interaction is called the hydration force. It

appears as a deviation from the DLVO theory for short distances between two molecularly

smooth electrically charged surfaces. {Note that sometimes other, different effects are also

termed "hydration force", see Ref. [99] for review.}

Experimentally the existence of hydration repulsive force was established by Israelachvili et al.

[95, 96] and Pashley [97, 98] who examined the validity of DLVO-theory at small film

thickness in experiments with films from aqueous electrolyte solutions confined between two

mica surfaces. At electrolyte concentrations below 10�4 M (KNO3 or KCl) they observed the

typical DLVO maximum, However, at electrolyte concentrations higher than 10�3 M they did

not observe the expected DLVO maximum; instead a strong short range repulsion was

detected; cf. Fig. 5.10. Empirically, the hydration force appears to follow an exponential law

[3]:
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fhydr = f0 exp(�h/�0) (5.97)

where, as usual, h is the film thickness; the decay length is �0 � 0.6 � 1.1 nm for 1:1

electrolytes; the pre-exponential factor, f0 , depends on the specific surface but is usually about

3 � 30 mJ/m2.

The hydration force stabilizes thin liquid films and dispersions preventing coagulation in the

primary minimum (that between points 2 and 3 in Fig. 5.3). In historical plan, the hydration

repulsion has been attributed to various effects: solvent polarization and H-bonding [101],

image charges [102], non-local electrostatic effects [103], existence of a layer of lower

dielectric constant, �, in a vicinity of the interface [104, 105]. It seems, however, that the main

contribution to the hydration repulsion between two charged interfaces originates from the

finite size of the hydrated counterions confined into a narrow subsurface potential well [100].

(The latter effect is not taken into account by the DLVO theory, which deals with point ions.)

Indeed, in accordance with Eq. (1.65), at high electrolyte concentration (large �) and not too

low surface potential �s, a narrow potential well is formed in a vicinity of the surface, where

the concentration of the counterions is expected to be much higher than its bulk value. At such

high subsurface concentrations (i) the volume exclusion effect, due to the finite ionic size,

becomes considerable and (ii) the counterion binding (the occupancy of the Stern layer) will be

greater, see Fig. 1.4. The formed dense subsurface layers from hydrated counterions prevent

two similar surfaces from adhesion upon a close contact.

This is probably the explanation of the experimental results of Healy et al. [106], who found

that even high electrolyte concentrations cannot cause coagulation of amphoteric latex particles

due to binding of strongly hydrated Li+ ions (of higher effective volume) at the particle

surfaces. If the Li+ ions are replaced by weakly hydrated Cs+ ions (of smaller effective volume),

the hydration repulsion becomes negligible, compared with the van der Waals attraction, and

the particles coagulate as predicted by the DLVO-theory.

The effect of the volume excluded by the counterions becomes important in relatively thin

films, insofar as the aforementioned potential well is located in a close vicinity of the film

surfaces. In Ref. [100] this effect was taken into account by means of the Bikerman equation

[107, 108]:



Liquid Films and Interactions between Particle and Surface 219

� �
� �

kT
eZUUn

nv

znv
zn i

iii

k
k

k
k

i
�

��

�

�

�

�

�
;exp

1

1

0
0

(5.98)

Here z is the distance to the charged surface, ni and Ui are the number density and the potential

energy (in kT units) of the i-th ion in the double electric layer;  ni0 is the value of ni in the bulk

solution;  the summation is carried out over all ionic species;  v has the meaning of an average

excluded volume per counterion;  the theoretical estimates [100] show that v is approximately

equal to 8 times the volume of the hydrated counterion.

The volume exclusion effect leads to a modification of the Poisson equation (5.86); it is now

presented in the form
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where �(z) denotes the charge density in the electric double layer. For v = 0 Eq. (5.99) reduces

to the expression used in the conventional DLVO theory. Taking into account the definition of

Ui, one can numerically solve Eq. (5.99). Next, the total electrostatic disjoining pressure can be

calculated by means of the expression [328]
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where the subscript "m" denotes values of the respective variables at the midplane of the film.

Finally, the non-DLVO hydration force can be determined as an excess over the conventional

DLVO electrostatic disjoining pressure:

DLVO
el

tot
elhydr ����� (5.101)

where DLVO
el�  is defined by Eq. (5.80), which can be deduced from Eq. (5.100) for v � 0. The

effect of v � 0 leads to a larger value of �m, which contributes to a positive (repulsive) �hydr.

Similar, but quantitatively much smaller, is the effect of the lowering of the dielectric constant,
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�, in a vicinity of the interface [100].

The quantitative predictions of Eqs. (5.99)�(5.101) are found to agree well with experimental

data of Pashley [97, 98], Claesson et al. [109] and Horn et al. [110]. In Fig. 5.10 results from

theoretical calculations for F/R � 2�f vs. h are presented; here F is the force measured by the

surface force apparatus between two crossed cylinders of radius R; as usual, f is the total

surface free energy per unit area, see Eq. (5.9). The dependence of hydration repulsion on the

concentration of electrolyte, KCl, is investigated. All theoretical curves are calculated for

v = 1.2 � 10�27 m3 (8 times the volume of the hydrated K+ ion), AH = 2.2 � 10�20 J and

�s = �128.4 mV; the boundary condition of constant surface potential is used. In Fig. 5.10 for

Cel = 5 � 10�5 and 10�4 M a typical DLVO maximum is observed. However, for Cel = 10�3, 10�2

and 10�1 M maximum is not seen, but instead, the short range hydration repulsion appears.

These predictions agree with the experimental findings. Note that the increased electrolyte

concentration increases the hydration repulsion, but suppresses the long-range double layer

repulsion.

5.2.6. ION-CORRELATION SURFACE FORCE

The positions of the ions in an electrolyte solution are correlated in such a way that a

counterion atmosphere appears around each ion thus screening its Coulomb potential. The

latter effect has been taken into account in the theory of strong electrolytes by Debye and

Hückel [111, 112], which explains why the activities of the ions in solution are smaller than

their concentrations, see Refs. [113, 114] for details. The energy of formation of the counterion

atmospheres gives a contribution to the free energy of the system called correlation energy

[115]. The correlation energy provides a contribution to the osmotic pressure of the electrolyte

solution, which can be expressed in the form [111, 112]
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(5.102)

The first term in the right-hand side of the Eq. (5.102) corresponds to an ideal solution,

whereas the seconds term takes into account the effect of electrostatic interactions between the

ions. The expression for �el in the DLVO-theory, Eq. (5.80), obviously corresponds to an ideal
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solution, that is to the first term in Eq. (5.102), the contribution of the ionic correlations being

neglected.

In the case of overlap of two electric double layers, formed at the surfaces of two bodies

interacting across an aqueous phase, the effect of the ionic correlations also gives a

contribution, �cor, to the net disjoining pressure, as pointed out by Guldbrand et al. [116]. �cor

can be interpreted as a surface excess of the last term in Eq. (5.102). In other words, the ionic

correlation force originates from the fact that the counterion atmosphere of a given ion in a thin

film is different from that in the bulk of the solution. There are two reasons for this difference:

(i) the ionic concentration in the film differs from that in the bulk and (ii) the counterion

atmospheres are affected (deformed) due to the neighborhood of the film surfaces.

Both numerical [116-118] and analytical [119, 120] methods have been developed for

calculating the ion-correlation component of disjoining pressure, �cor. Attard et al. [119]

derived the following asymptotic formula, which is applicable to the case of symmetric (Z:Z)

electrolyte and sufficiently thick films [exp(��h) << 1]:
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Here �el is the conventional DLVO electrostatic disjoining pressure, see Eq. (5.80), and
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�s is the surface charge density, i.e. the net surface electric charge per unit area.

The theory [117-120] predicts that for films of identically charged surfaces �cor is negative

(Acor < 0) and corresponds to attraction, which can be comparable by magnitude with �vw. In

the case of 1:1 electrolyte �cor is usually a small correction to �el. In the case of 2:2 electrolyte,

however, the situation can be quite different: for electrolyte concentrations above a certain

critical  value  the  ion-correlation  attraction  could  become  greater  than  the  double  layer
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Fig. 5.11. Theoretical dependence of �cor /�el on the electrolyte concentration for 1:1, 2:2 and 3:3
electrolytes calculated by means of Eq. (5.103); for all curves the area per surface charge is
| e/�s | = 100 Å2; after Ref. [121].

repulsion. In other words, in the presence of bivalent and multivalent counterions �cor could

become the predominant surface force.

To illustrate the theoretical predictions, in Fig. 5.11 we present numerical data computed by

means of Eq. (5.103). At constant �s the coefficient Acor, multiplying �el in Eq. (5.103), is

independent of the film thickness h. In other words, for exp(��h) << 1, the ratio �cor/�el is

independent of h. In Fig. 5.11 we plot �cor/�el vs. the electrolyte concentration for 1:1, 2:2 and

3:3 electrolytes; we have used the value |e/�s| = 100 Å2 for the area per surface charge. The

"critical" electrolyte concentration corresponds to the intersection points of the curves with the

horizontal line at �1 in Fig. 5.11; for electrolyte concentrations above the critical one the

calculated ionic correlation attraction becomes greater by magnitude than the double layer

repulsion. One sees in the figure that for a 2:2 electrolyte the critical concentration is about

1 mM, whereas for a 3:3 electrolyte it is below 10�4 M.

In the case of secondary thin liquid films, stabilized by ionic surfactant (h = h2 in Fig. 5.3), the

measured contact angle is considerably larger than the theoretical value predicted if only van

der Waals attraction is taken into account [122]. The experimentally detected additional
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attraction in these very thin films (h � 5 nm) can be attributed to short range ionic correlation

effects [123] as well as to the discreteness of the surface charge [2, 124, 125].

Short-range net attractive ion-correlation forces have been measured by Marra [126, 127] and

Kjellander et al. [128, 129] between highly charged anionic bilayer surfaces in CaCl2 solutions.

These forces are believed to be responsible for the strong adhesion of some surfaces (clay and

bilayer membranes) in the presence of divalent counterions [128, 130]. On the other hand,

Kohonen et al. [131] measured a monotonic repulsion between two mica surfaces in 4.8 � 10�3

M solution of MgSO4; the lack of attractive surface force in the latter experiments could be

attributed, at least in part, to the presence of a strong hydration repulsion due to the Mg2+ ions.

Additional work is necessary to verify the theoretical predictions and to clarify the physical

significance of the ion-correlation surface force.

In summary, the conventional electrostatic disjoining pressure, �el � DLVO
el� , corresponds to a

mean-field model, i.e. ideal solution of point ions in the electric field of the double layer. The

hydration and ionic-correlation components of disjoining pressure, �hydr and �cor, represent

“superstructures” over the conventional DLVO model of the double-layer forces. In particular,

�hydr takes into account the effect of the ionic finite volume. In addition, �cor, accounts for the

non-ideality of the electrolyte solutions, which is caused by the long-range electric forces

between the ions. The total surface force, due to the overlap of electric double layers, is equal

to the sum of the aforementioned three contributions:

tot
el�  = �el + �hydr + �cor (5.104)

Note that in view of Eq. (5.89) and (5.103) one obtains

�el + �cor = (1 + Acor)�el � (1 + Acor)C exp(��h) � C~ exp(��h)

where C~  is a “renormalized” pre-exponential factor. In practice C~  is determined from the

experimental fits and it is often identified with the pre-exponential factor in Eq. (5.93). Thus an

apparent (lower) value of the surface potential �s is determined neglecting the effect of the

ionic correlations. Of course, this would be correct if |Acor| << 1. It turns out that the

contribution of the ionic correlations can be detected if only an independently determined value
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of �s is available. However, in the case of strong ionic correlations one could have 1 + Acor < 0,

that is �cor/�el < �1 in Fig. 5.11; in such a case the net interaction between similar surfaces

would become attractive and the effect of �cor could not be misinterpreted as �el at lower

surface potential.

5.2.7. OSCILLATORY STRUCTURAL AND DEPLETION FORCES

Oscillatory structural forces are observed in two cases:

(i) In very thin liquid films (h 	 5 nm) between two molecularly smooth solid surfaces; in this

case the period of oscillations is of the order of the diameter of the solvent molecules. These, so

called solvation forces [3, 40], could be important for the short-range interactions between solid

particles in dispersions.

(ii) In thin liquid films containing colloidal particles (including surfactant micelles, protein

globules, latex beads); in this case the period of the oscillatory force is close to the diameter of

the colloid particles, see Fig. 5.12. At higher particle concentrations these colloid structural

forces stabilize the liquid films and colloids [132-135]. At lower particle concentrations the

structural forces degenerate into the so called depletion attraction, which is found to destabilize

various dispersions [136-138].

In all cases, the oscillations decay with the increase of the film thickness; in the experiment one

rarely detects more than 8-9 oscillations.

Physical origin of the oscillatory force. The oscillatory structural force appears when

monodisperse spherical (in some cases ellipsoidal or cylindrical) particles are confined between

the two surfaces of a thin film. Even one "hard wall" can induce ordering among the

neighboring molecules. The oscillatory structural force is a result of overlap of the structured

zones formed at two approaching surfaces, see Fig. 5.13 and Refs. [3, 139-141].

A wall can induce structuring in the neighboring fluid only if the magnitude of the surface

roughness is negligible compared with the particle diameter, d. If surface irregularities are

present (say a rough solid surface), the oscillations are smeared out and oscillatory structural

force does not appear.  If the film surfaces are fluid,  the role of the surface roughness is played
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Fig. 5.12. Experimental curve: thickness of an emulsion film, h, vs. time; the step-wise thinning of the
film is clearly seen. The film is formed from micellar aqueous solution of the ionic surfactant
sodium nonylphenol-polyoxyethylene-25 sulfate (SNP25S) with 0.1 M NaCl; the height of a
step is close to the micelle hydrodynamic diameter. The steps represent metastable states
corresponding to different number micelle layers inside the film, see the inset; data from
Marinova et al. [149].

by the interfacial fluctuation capillary waves, whose amplitude (1�5 Å) is comparable with the

diameter of the solvent molecules. Structural forces in foam or emulsion films appear if the

diameter of the colloidal particles is much larger than the amplitude of the surface corrugations.

Surfactant micelles can play the role of such particles; in fact the manifestation of colloid

structural forces was first observed with foam films formed from micellar surfactant solutions.

Johnott [142] and Perrin [143] observed that the thickness of foam films decreases with several

step-wise transitions. This phenomenon was called "stratification". Bruil and Lyklema [144]

and Friberg et al. [145] studied systematically the effect of ionic surfactant and electrolyte on

the occurrence of the step-wise transitions. Keuskamp and Lyklema [146] suggested that some

oscillatory interaction between the film surfaces must be responsible for the observed

phenomenon. Kruglyakov et al. [147, 148] and Marinova et al. [149] observed stratification

with emulsion films, see Fig. 5.12. Stepwise structuring of colloidal particles has been observed

also in wetting films (with one solid surface) [150].
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Fig. 5.13. (a) From right to the left: consecutive stages of thinning of a liquid film containing spherical
particles of diameter d. (b) Schematic plot of the oscillatory-structural component of
disjoining pressure, �osc, vs. the film thickness h. The metastable states of the film (the steps
in Fig. 5.12) correspond to the intersection points of the oscillatory curve with the horizontal
line � = Pc, see Eq. (5.3). The stable branches of the oscillatory curve are those with
��/�h < 0; see Ref. [3] for details.

As a first guess, it has been suggested [148, 151] that a possible explanation of the phenomenon

can be the formation of surfactant lamella liquid-crystal structure inside the film. Such lamellar

micelles are observed to form in surfactant solutions, however, at concentrations much higher

than those used in the experiments with stratifying films. The latter fact makes the explanation

with lamella liquid crystal irrelevant. Nikolov et al. [41, 132-135] observed stratification not

only with micellar surfactant solutions but also with suspensions of latex particles of micellar

size. The step-wise changes in the film thickness were approximately equal to the diameter of

the spherical particles, contained in the foam film. The observed multiple step-wise decrease of

the film thickness (see Fig. 5.12) was attributed to the layer-by-layer thinning of a colloid-

crystal-like structure from spherical particles inside the film, which is manifested by the

appearance of an oscillatory structural force [133]. The metastable states of the film (the steps)

correspond to the roots of the equation �(h) = Pc for the stable oscillatory branches with
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��/�h < 0; in Fig. 5.13 there are three such roots; cf. Figs. 5.3 and 5.13; Pc is the applied

capillary pressure.

The mechanism of stratification was studied theoretically in Ref. [152], where the appearance

and expansion of black spots in horizontal stratifying films was described as a process of

condensation of vacancies in a colloid crystal of ordered particles within the film. This

mechanism was confirmed by subsequent experimental studies with casein submicelles and

silica particles [153, 154]. Additional studies with vertical liquid films containing latex

particles indicated that the packing of the structured particles is hexagonal [155].

The stable branches of the oscillatory disjoining pressure isotherm were experimentally

detected for films from micellar solutions by Bergeron and Radke [156]. Oscillatory structural

forces due to micelles and microemulsion droplets were directly measured by means of a

surface force balance [157, 158]. Static and dynamic light scattering methods were also applied

to investigate the micelle structuring in stratifying films [159].

Theoretical expressions for the oscillatory forces. As already mentioned, the period of

the oscillations is close to the particle diameter. In this respect the structural forces are

appropriately called the "volume exclusion forces" by Henderson [160], who derived an

explicit (though rather complex) analytical formula for calculating these forces. Modeling by

means of the integral equations of statistical mechanics [161-164] and numerical simulations

[165-167] of the oscillatory force of the step-wise film thinning are also available. A

convenient semiempirical formula for the oscillatory structural component of disjoining

pressure was proposed [168]
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where d is the diameter of the hard spheres, d1 and d2 are the period and the decay length of the

oscillations which are related to the particle volume fraction, �, as follows [168]
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Fig. 5.14. Plot of the dimensionless oscillatory disjoining pressure, �oscd3/kT, vs. the dimensionless
film thickness h/d for volume fraction � = 0.357 of the particles in the bulk suspension. The
solid curve is calculated from Eq. (5.105), the dotted curve � from the theory by Henderson
[160], the dashed curve is from Ref. [162] and the �-points � from Ref. [165]; after Ref.
[168].

Here �� = �max � �  with �max being the value of � at close packing: �max = 	/(3 2 ) � 0.74.

P0 is the particle osmotic pressure determined by means of the Carnahan-Starling formula [169]
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where n is the particle number density.  For h < d, when the particles are expelled from the slit

into the neighboring bulk suspension,  Eq. (5.105) describes the so called depletion attraction,

sее the first minimum in Fig. 5.13. On the other hand, for h > d the structural disjoining

pressure oscillates around P0, defined by Eq. 5.107. As seen in Fig. 5.14, the quantitative

predictions of Eq. (5.105) compare well with the Henderson theory [160] as well as with

numerical results Kjellander and Sarman [162] and Karlström [165].

It is interesting to note that in oscillatory regime the concentration dependence of �osc is

dominated by the decay length  d2  in the exponent,  cf. Eq. (5.106).  Roughly speaking,  for a

h/d

�
os

cd
 3
/k

T
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given distance h the oscillatory disjoining pressure �osc increases five times when � is

increased with 10%, see Ref. [168].

The contribution of the oscillatory structural forces to the interaction free energy per unit area

of the film can be obtained by integrating �osc in accordance with Eq. (5.9):
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If the colloidal particles are not real hard spheres, then their effective hard-core diameter can be

estimated from the formula [134]

d � [3
2/(4	)]1/3 (5.109)

Where 
2 is the second virial coefficient in the virial expansion of the osmotic pressure due to

the particles, Posm/(nkT) = 1 + 
2n/2 + ...; 
2 can be determined by static light scattering [170].

In the case of electrically charged particles the effective diameter can be estimated from the

expression [132]

d � dH + 2��1 (5.110)

where dH is the hydrodynamic diameter of the colloid particles, which can be determined by

dynamic light scattering [171].

Depletion interaction. With the decrease of particle (micelle) volume fraction � the

amplitude of the oscillations decreases and the oscillatory structural force degenerates into the

depletion interaction (only the first minimum in the oscillatory curve in Fig. 5.13b remains).

The latter interaction manifested itself in the experiments by Bondy [172], who observed

coagulation of rubber latex in presence of polymer molecules in the disperse medium. In the

case of plane-parallel films the depletion component of disjoining pressure is
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Fig. 5.15. Schematic presentation of the overlap of the depletion zones around two larger particles of
diameter dL separated at a distance h0. The centers of the smaller particles (of diameter d)
cannot come closer to the larger particles than the circumferences denoted with dashed line.
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which is a special case of Eq. (5.105) for small d2, see Ref. [3] for details. Evans and Needham

[173] to measured the depletion energy of two interacting bilayer surfaces in a concentrated

Dextran solution; their results confirm the validity of Eq. (5.111).

Asakura and Oosawa [136, 137] published a theory, which attributed the observed interparticle

attraction to the overlap of the depletion layers at the surfaces of two approaching larger colloid

particles, see Fig. 5.15. The centers of the smaller particles, of diameter, d, cannot approach the

surface of a larger particle (of diameter dL) at a distance shorter than d/2, which is the thickness

of the depletion layer. When the two depletion layers overlap (Fig. 5.15) some volume between

the large particles becomes inaccessible for the smaller particles. This gives rise to an osmotic

pressure, which tends to suck out the solvent between the larger particles thus forcing them

against each other.  The total depletion force experienced by one of the larger particles is [136,

137]

� �0dep hSnTkF �� (5.112)
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where the effective depletion area is
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Here h0  is the shortest distance between the surfaces of the larger particles and n is the number

density of the smaller particles.  By integrating Eq. (5.112) one can derive an expression for the

depletion interaction energy between the two larger particles, Udep(h0).  For dL >> d this

expression reads

� � � � dhhd
d
dTkhU L

����� 0
2

030dep 0,
2
3/ � (5.114)

where � = 	nd3/6 is the volume fraction of the small particles. The maximum value of Udep at

h0 = 0 is Udep(0)/kT � �3�dL /(2d).  For example, if dL /d = 50 and � = 0.1, then Udep(0) =

�7.5 kT.  This depletion attraction turns out to be large enough to cause flocculation in

dispersions and attachment of particles to surfaces [42, 138, 174-177], as well as attraction

between lipid bilayers [178, 179].

5.2.8. STERIC INTERACTION DUE TO ADSORBED MOLECULAR CHAINS

The adsorption of polymeric molecules at an interface may lead to the appearance of polymeric

brushes, see Fig. 5.16. The polymers could be attached to the surface by chemical bonding

(chemisorption, anchoring) of some groups. Alternatively, a polymeric coverage of the surface

can be achieved by physical adsorption of nonionic surfactants, whose hydrophilic moieties

represent water-soluble polymers (typically � polyoxyethylenes).

When two surfaces covered with polymer brushes approach each other, the overlap of the

brushes gives rise to a strong osmotic repulsion, which protects the surfaces from adhesion and

the colloidal dispersions from coagulation [3, 42, 180-182]. This steric repulsion plays a role

similar to that of the electrostatic repulsion with respect to colloid stability.

Thickness of a separate polymeric brush. Obviously, the range of action of the steric

repulsion is determined by the thickness of the brush, L. The latter can be defined as the mean-

square end-to-end distance of the hydrophilic portion of the chain.  If a chain, composed of  N
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Fig. 5.16. Polymeric chains adsorbed at an interface form a “brush” of thickness L. The overlap of the
brushes formed at the two surfaces of a thin liquid film gives rise to a steric interaction.

segments, were completely extended, then L would be equal to lN, where l is the length of a

polymeric segment. However, due to the Brownian motion L < lN.  For an isolated anchored

chain in an ideal (theta) solvent L can be estimated as [42]

NlLL �� 0 (5.115)

The solvent�polymer interactions may essentially influence L, and therefrom � the steric

interaction. The osmotic pressure of either dilute or concentrated polymer solutions can be

expressed in the form [183]

...
3
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���� wnvn
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(5.116)

Here n is the number segment density, v and w account for the pair and triplet interactions

between segments. In fact v and w are counterparts of the second and third virial coefficients in

the theory of non-ideal gases [114].  v and w can be calculated if information about the polymer

chain and the solvent is available [42]

� �,21,/ 2/12/1
���� wvNmvw A (5.117)

where v  (m3/kg) is the specific volume per segment, m (kg/mol) is the molecular weight per

segment, NA  is the Avogadro number and � is the Flory parameter [114]:

� �PSSSPP uuu
kT
c 2

2
����� (5.118)

c is the number of the closest neighbors of a molecule, uAB stands for the energy of interaction



Liquid Films and Interactions between Particle and Surface 233

between molecules type “A” and “B” (A,B = P,S; “P” = polymeric segment, “S” = solvent

molecule). The parameter v can be zero (see Eq. 5.117) for some special temperature, called the

theta temperature.  The solvent at theta temperature is known as theta solvent or ideal solvent.

At the theta temperature the intermolecular (intersegment) attraction and repulsion in polymer

solutions are exactly counterbalanced.  In a good solvent, however, the repulsion prevails over

the attraction and v > 0.  In contrast, in a poor solvent the intersegment attraction prevails, so

v < 0.

In a good solvent L > L0, whereas in a poor solvent L < L0. In addition, L depends on the

surface concentration, �, of the adsorbed chains, i.e. L is different for an isolated molecule and

for a brush. If the segments repel each other, larger � leads to greater L. The mean field

approach [42, 184], applied to polymer solutions, provides the following equation for

calculating L:
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where vL ~and~,~
�  are the dimensionless values of L, � and v defined as follows:

� � lNvvlwNNlLL /~,/~,/~ 2/3
������ (5.120)

For an isolated adsorbed molecule (�~ = 0) in an ideal solvent ( v~ = 0) Eq. (5.119) predicts

L~ = 1, that is L = L0.

Interaction between two overlapping polymeric brushes. As already mentioned, the

major source of the steric repulsion between brushes (Fig. 5.16) is the increased osmotic

pressure in the zone of overlap. However, two other factors tend to reduce the osmotic

repulsion. (i) In a poor solvent the segments of the chain molecules attract each other; hence the

overlap of the two approaching layers of polymer molecules will be accompanied with the

appearance of more intersegment contacts which will decrease the free energy of the system.

The latter effect could sometimes prevail over the osmotic repulsion in the case of small

overlap (two brushes just touching each other). However, in the case of larger overlap (smaller

h) the osmotic repulsion becomes predominant, see Fig. 5.17.  (ii) Due to the repulsive
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Fig. 5.17. Experimental data for the steric
interaction obtained by surface force
apparatus. Plot of F/R � 2�f vs. h for two
surfaces covered with adsorption monolayers
from the nonionic surfactant C12(EO)6 for
various temperatures. The appearance of
minima indicates that with the increase of
temperature the water becomes a poor
solvent for the polyoxyethylene chains.
(From Ref. 190.)

interactions with the chains of neighboring molecules in the brush each polymeric chain is

subjected to an extension (L > L0, see Eq. 5.119), which produces an extra elastic stress. This

elastic stress can be partially released when two such monolayers are pressed against each

other. As a result, the free energy of the system decreases, which is equivalent to an effective

attractive contribution to the net steric surface force, which will be briefly termed elastic

attraction.

Dolan and Edwards [185] calculated the steric interaction free energy per unit area, fst, for two

polymeric adsorption monolayers in an ideal solvent as a function of the film thickness, h,:
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where L0 is defined by Eq. (5.115). The first term in the right-hand side of Eq. (5.121) comes

from the osmotic repulsion between the brushes; the second term is negative and accounts

effectively for the decrease of the elastic energy of the initially extended chains with the

decrease of the film thickness, h. The boundary between the power-law regime (fst � 1/h2) and

the exponential decay regime is at h = L0 3  � 1.7 L0, the latter being slightly less than 2L0

which is the intuitively expected beginning of the steric overlap.

In the case of a good solvent the disjoining pressure �st = �dfst/dh can be calculated by means

of an expression stemming from the theory by Alexander and de Gennes [186-188]:
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where Lg is the thickness of a brush in a good solvent [186].  The positive and the negative

terms in the right-hand side of Eq. (5.123) correspond to osmotic repulsion and elastic

attraction. The validity of Alexander�de Gennes theory was experimentally confirmed by

Taunton et al. [189] who measured the forces between two brush layers grafted on the surfaces

of two crossed mica cylinders, see also Ref. [3]. Theoretical expressions, which are applicable

to the case when intersegment attraction is present (the solvent is poor, see Fig. 5.17) are

reviewed by Russel et al. [42].

5.2.9. UNDULATION AND PROTRUSION FORCES

Adsorption monolayers at fluid interfaces and bilayers of amphiphilic molecules in solution

(phospholipid membranes, surfactant lamellas) are involved in a fluctuation wave motion.  The

configurational confinement of such thermally exited modes within the narrow space between

two approaching interfaces gives rise to short-range repulsive surface forces, called fluctuation

forces, which are briefly presented below.
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Fig. 5.18. Fluctuation wave forces due to configurational confinement of thermally excited modes into
a thin liquid film. (a) The undulation force is related to the bending mode of membrane
fluctuations. (b) The protrusion force is caused by the spatial overlap of protrusions of
adsorbed amphiphilic molecules.

Undulation force. The undulation force arises from the configurational confinement

related to the bending mode of deformation of two fluid bilayers, like surfactant lamellas or

lipid membranes.  This mode consists in undulation of the bilayer at constant area and

thickness, Fig. 5.18a.  Helfrich et al. [191, 192] established that two such undulated "tension-

free" bilayers, separated at a mean surface-to-surface distance h, experience a repulsive

disjoining pressure:
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Here kt is the total bending elastic modulus of the bilayer as a whole; the experiment shows that

kt is of the order of 10�19 J for lipid bilayers [193]. The undulation force was measured and the

dependence �und � h�3 was confirmed experimentally [194-196]. In lamellar phases present in

concentrated solutions of nonionic amphiphiles the undulation repulsion opposes the van der

Waals attraction thus producing a stabilizing effect [197-199].

Protrusion force. The protrusion of an amphiphilic molecule from an adsorption

monolayer (or micelle) may fluctuate about the equilibrium position of the molecule owing to

the thermal motion, Fig. 5.18b.  In other words, the adsorbed molecules are involved in a

discrete wave motion, which differs from the continuous mode of deformation related to the
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undulation force. The molecular protrusions from lipid membranes and adsorption monolayers

have been detected by means of NMR, neutron diffraction and X-ray synchrotron diffraction

[200, 201]. In relation to the micelle kinetics, Aniansson et al. [202, 203] found that the energy

of protrusion of an amphiphilic molecule can be modeled as a linear function: u(z) = � z, where

z is the distance out of the surface (z > 0);  they determined � � 3 
�

 10�11 J/m for single-chained

surfactants. By using a mean-field approach Israelachvili and Wennerström [99] derived an

expression for the protrusion disjoining pressure which appears when two protrusion zones

overlap (Fig. 5.18b):
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� has the meaning of characteristic protrusion decay length; � = 0.14 nm at 25
C; � denotes the

number of protrusion sites per unit area. �protr is positive and corresponds to repulsion; it

decays exponentially for h << �; in the other limit, h >> �, we have �protr � h�1,  that is  �protr

is divergent for h � 0. Integrating Eq. (5.125) in accordance with Eq. (5.9) one obtains a

relatively compact expression for the free energy of the protrusion interaction per unit area:

fprotr(h) = �
�

�

h

hdh ˆ)ˆ(protr  = ��kT ln[1 � (1 + h/�)exp(�h/�)] (5.126)

5.2.10. FORCES DUE TO DEFORMATION OF LIQUID DROPS

Effect of the interfacial dilatation.  In the course of collision of a liquid drop with a

solid surface (Fig. 5.19a) or with another drop (Fig. 5.19b) interfacial deformations may

happen. We assume that before the collision the fluid particle is sphere of radius R. When the

surface-to-surface distance h is sufficiently small, a flattening (a film of radius rc) could appear

in the zone of contact. This deviation from the spherical shape causes a dilatation of the surface

of the fluid particle; the respective increase of the surface energy can be deduced as follows.

For small dilatation, � � dA/A, the surface tension can be expanded in series: � = �0 + EG� + 




where �0 is the surface tension of the non-deformed drop, A and EG denote area and Gibbs

elasticity, see Eq. (1.145). Then the work of dilatation per unit area is
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Fig. 5.19. Deformation of interacting emulsion drops: (a) drop colliding with a solid surface; (b) central
collision of two drops; R is the radius of the spherical part of the drop; rc is the radius of the
contact line at the boundary film�meniscus.
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where A0 is the area if the nondeformed (spherical) drop and �A = A � A0 is the increase of its

area upon deformation. The total energy of surface dilatation is [37]

Udil = A0 wdil = 
2
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where j = 1,2 for the system depicted in Fig. 5.19a and 5.19b, respectively. Further, the surface

area and the volume of a deformed drop are
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where sin� = rc/R, see Fig. 5.19 for the notation. We consider small deformations at fixed

volume of the drop; then using series expansion in Eq. (5.130) for � � sin2
� << 1 and fixed V

one can derive
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Substituting Eq. (5.131) into Eq. (5.129) and expanding again in series for small � one obtains
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Finally, combining Eqs. (5.128) and (5.132) one deduces [37]
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Calculations for typical emulsion systems show that the condition (rc/R)2 << 1 is always

satisfied and Eq. (5.127) holds with a good precision. The contribution of EG to Udil , that is the

last term in Eq. (5.133) is usually an effect of higher order and can be neglected. However, for

microemulsion drops the surface tension is rather low, � << 1 mN/m, and then the term with

EG  in Eq. (5.133) may become significant. On the other hand, if there is no adsorbed

surfactant on the drop surface, then EG = 0. In all cases Udil > 0, i.e. the interfacial dilatation

gives rise to an effective repulsion between the two droplets. Equation (5.133) predicts that Udil

strongly increases with the rise of the film radius rc.

Effect of interfacial bending.  The flattening of the drop surface in the zone of contact

(Fig. 5.19) is accompanied by change in the interfacial bending energy, Ubend. In Section 3.3.2

we have considered in detail this effect; in agreement with Eq. (3.96) the energy of interfacial

bending is [39]:

Ubend = �j�rc
2B0/R, (rc/R)2 << 1 (5.134)

where B0 is the interfacial bending moment, and j is the same as in Eq. (5.128). Note that

B0 = �4kcH0, where H0 is the spontaneous curvature and kc is the interfacial bending elastic

modulus. As discussed in Section 3.3.2, for oil-in-water (O/W) emulsions Ubend > 0 and,

consequently, the interfacial bending is energetically unfavorable. However, for water-in-oil

(W/O) emulsions Ubend < 0, which favors the flattening [39].
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5.3. SUMMARY

The act of collision of a colloid particle with an interface (or with another particle) is

accompanied by the formation of a thin liquid film between the two approaching surfaces. If

attractive forces prevail in the liquid film, the latter becomes unstable, breaks and the particle

“enters” the interface (or coalesces with the other particle). Conversely, if the repulsive forces

are predominant, the particle will rebound from the interface and there will be no attachment /

coagulation. A third possibility is the attractive and repulsive forces to counterbalance each

other; in such case an equilibrium film is formed between the particle and the interface (the

other particle). The balance of all forces exerted on an attached particle is considered, see Fig.

5.2. It turns out that at equilibrium the repulsive forces dominate the disjoining pressure �,

which is counterbalanced by the action of transversal tension �, the latter being dominated by

the attractive forces in the transition zone film�meniscus, see Eq. (5.13). Thermodynamic

relationships of the latter quantities with the contact angle are derived. Next we consider the

Derjaguin approximation, which allows one to calculate the interaction across a film of

nonuniform thickness if the interaction energy per unit area of a plane-parallel film is known,

see Eq. (5.46).

Further we consider interactions of different physical origin in thin liquid films. Expressions

for the van der Waals interaction between particles / interfaces of various shapes are presented,

Eqs. (5.57)�(5.64). Equations for calculating the Hamaker constant are reviewed, see Eqs.

(5.65)�(5.78). Hypotheses about the nature of the long-range hydrophobic surface force and its

physical significance are discussed in Section 5.2.3. Special attention is paid to the electrostatic

surface force which is due to the overlap of the electric double layers formed at the charged

surfaces of an aqueous film, Section 5.2.4. A more detailed theory of the interactions across

films from electrolyte solutions should take into account also the hydration repulsion (Section

5.2.5) and ion-correlation attraction (Section 5.2.6). The presence of fine colloidal particles

(surfactant micelles, protein globules, etc.) in a liquid film gives rise to an oscillatory structural

force, which could stabilize the film or cause its step-wise thinning (stratification), Section

5.2.7. At low volume fractions of the fine particles the oscillatory force degenerates to the

depletion attraction, which leads to particle attachment and flocculation; see Eqs.
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(5.111)�(5.114). Adsorbed polymeric molecules form “brushes” at the film surfaces; the

overlap of such “brushes” in the course of film thinning produce a steric interaction. The latter

can be repulsive or attractive depending on whether the water is good or poor solvent for the

polymeric chains, see Section 5.2.8. Similar steric�osmotic effects appears when configura-

tional confinement of thermally excited surface modes takes place in a thin liquid film. The

bending mode of surface fluctuations gives rise to the undulation force, whereas the discrete

protrusions of adsorbed amphiphilic molecules lead to the appearance of a short-range

protrusion force, both of them being repulsive, see Section 5.2.9. Finally, the collisions of

emulsion drops are accompanied with deformation, i.e. deviation from the spherical shape, see

Fig. 5.19. This causes extension of the drop surface area and change in the surface curvature,

which lead to dilatational and bending contributions to the overall interaction energy, see Eqs.

(5.133) and (5.134). The total particle�surface (or particle�particle) interaction energy is a

superposition of contributions from all operative surface interactions, see Eq. (5.53).

Another important contribution to the particle-surface and particle-particle interactions stems

from the viscous friction in the thin liquid films. This hydrodynamic interaction is considered

in the next Chapter 6.
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