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The possibility of making high-contact-angle, rough surfaces from low-contact-angle materials has recently been
suggested and demonstrated. A thermodynamic analysis of this possibility in terms of feasibility and stability is
presented. It turns out that only roughness topographies that conform to a feasibility condition which is developed
in the present paper can support this phenomenon. Even under conditions that support the phenomenon, the high-
contact-angle state may not be stable, and transition from the heterogeneous (Cassie-Baxter) wetting regime to the
homogeneous (Wenzel) regime with a lower contact angle may occur. In addition, it is suggested to use the general
terms hygrophilic and hygrophobic (based on the Greek prefix hygro- that means liquid) to describe low- and high-
contact-angle surfaces, respectively.

Introduction

Superhydrophobic (water-repellent) surfaces have attracted
much attention during the past decade, due to their usefulness
in many areas.1–34 Superhydrophobicity is usually defined by a

very high apparent contact angle (APCA), typically > ∼150°,
and a very low roll-off angle (the inclination angle at which a
water drop rolls off the surface), typically a few degrees. Since
currently available materials have ideal (Young) contact angles
with water that are lower than ∼120°, very high APCAs can be
achieved only due to the effect of roughness.35,36 It is well-
known that wetting on rough surfaces can occur in either of two
regimes:27,35–37 (a) the homogeneous wetting regime, where the
liquid completely penetrates into the roughness valleys, and (b)
the heterogeneous wetting regime, where air is trapped inside
the roughness valleys underneath the liquid. The term “air” will
be used in this paper to indicate the gas with which the liquid
and solid are in contact, which usually comprises air and vapor
of the liquid.

For the most stable APCA38 in the former regime, θW, the
following equation was developed by Wenzel35

cos θW ) r cos θY (1)

where r is the roughness ratio, defined as the ratio between the
solid surface area and its projection, and θY is the Young contact
angle (CA) that applies to an ideal surface of the same chemistry.
For the most stable APCA38 in the heterogeneous wetting regime,
θCB, the Cassie-Baxter (CB) equation36 was developed:

cos θCB ) rf f cos θY + f- 1 (2)

In this equation, f is the fraction of the projected area of the solid
surface under the drop that is wet by the liquid and rf is the
roughness ratio of the wet area. When f ) 1, rf ) r, and the CB
equation turns into the Wenzel equation. The validity of the
Wenzel and CB equations, which has been recently questioned,39

had been previously justified and explained,40,41 as discussed
below in the Theory section. A recent study27 revealed a feasibility
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condition that needs to be fulfilled in order for the heterogeneous
wetting regime to exist:

d2(rf f) ⁄ df2 > 0 (3)

This condition shows that the heterogeneous (CB) regime may
exist only for certain types of roughness topographies and that
the transition between the two regimes does not depend only on
the roughness ratio.

The Wenzel equation requires θY to be higher than 90° in
order to get the high APCAs needed for superhydrophobicity.
The same is true for the CB equation when the surface roughness
is made of “regularly” shaped ridges and valleys, as typically
produced by random roughening processes (a detailed explanation
will be given below). Such Young CAs are usually achievable
with water; however, there is obviously much interest in liquid
repellency in general. Therefore, the question of getting surfaces
with high APCAs (.90°) from materials with low CAs (<90°)
has been raised. This does not seem to be feasible in the
homogeneous wetting regime, since the Wenzel equation does
not account for such a possibility. However, the CB equation
does allow it, in principle, in the heterogeneous wetting regime.
Two methods have been suggested to achieve this goal, the first
of which utilizes closed-pore surfaces.42 The mechanism of this
method is quite obvious: liquid penetration into the closed pores
causes an increase in pressure, which, in turn, prevents further
penetration; this constraint imposes the heterogeneous wetting
regime and leads to high APCAs.

The second method makes use of rough surfaces with
multivalued topography (other terms used to describe such
surfaces were re-entrant, self-affine, and specific terms such as
mushroom-type or micro-hoodoos).1–3,8,42,43 The term “multi-
valued topography” implies that a line drawn vertically up from
a given point on the projection of the solid surface may meet the
actual solid interface more than once, such as, for example, in
the case of a surface made of mushroom-shaped bulges (see
Figure 1a). In this case (in contrast to the first method), the
roughness valleys are interconnected and also connected to the
outside atmosphere; therefore, liquid and air can exchange
positions without constraints, depending only on thermodynamic
preferences. This method has been experimentally demon-
strated;1–3,8 however, the theoretical explanation has not been
complete. The objective of the present paper is to theoretically
study the conditions under which a low-CA material may be
transformed into a high-APCA surface by using multivalued
roughness topography. For this purpose, it is necessary to
generalize the CB equation as well as the feasibility condition.

It is also suggested to use the terms hygrophilic and hygrophobic
(from the Greek prefix hygro- that means liquid) to describe in
general low-CA and high-CA surfaces. These terms can prevent
the need for using multiple adjectives such as hydrophilic/
oleophilic or hydrophobic/oleophobic.

Theory

The theory described in this paper generalizes the previous
analysis of wetting regimes on rough surfaces27 to include the
case of multivalued roughness topography. Three examples of
such topographies are shown in Figure 1a. The top one represents
a “pure” convex shape of roughness features; the middle one
represents a “pure” concave shape; and the bottom one shows
a mushroom-type surface which is convex at its upper part and
concave at its lower part. As will be shown below, there is a

major difference between such surfaces in terms of the
thermodynamically feasible wetting regime. The need for
generalization of the previous theory stems from the fact that for
multiple-valued topographies the solid-liquid area is not a unique
function of the liquid-air area. This is demonstrated by the very
simplified example given in Figure 1b and c, where there are two
different values of solid-liquid area for the same value of the
liquid-air area. Such a possibility is in contrast to the implicit
assumption underlying the CB equation, namely that, for each
area fraction of the liquid-air interface, (1 - f) in eq 2, there
is a single value of the projected area fraction of the solid-liquid
interface, given by f. The considerations related to multivalued
topographies do not affect the Wenzel equation, because the
roughness ratio can be defined in the same way as for single-
valued topographies. In addition, as mentioned above, the Wenzel
equation does not allow the possibility of surfaces of high APCAs
to be made of materials of low Young CAs. Therefore, the
following discussion is focused on the generalization of the CB
equation and the feasibility condition.

As is well-known, the equilibrium APCA is calculated by
minimizing the Gibbs energy of the system. It is convenient
(though not necessary27) to perform the minimization under the
constraint of a constant volume of the liquid drop. In general,
the Gibbs energy for rough or chemically heterogeneous surfaces
displays multiple minima, and there is no universal way to identify
the global minimum (most stable APCA). The useful approach
taken by Wenzel, Cassie, and Baxter was to define a seemingly
uniform surface with average properties that represent the physical
or chemical heterogeneity.35,36 The Gibbs energy on this
seemingly uniform surface has a single minimum that can be
easily defined, as in the case of a truly ideal surface. It was
rigorously proven for rough surfaces40 and numerically dem-

(42) Liu, J.-L.; Fenf, X.-Q.; Wang, G.; Yu, S.-W. J. Phys.: Condens. Matter
2007, 19, 356002.

(43) Herminghaus, S. Europhys. Lett. 2000, 52(2), 165–170.

Figure 1. (a) Examples of multivalued roughness features: (top) convex
features, (middle) concave features, and (bottom) mixed convex and
concave features. Panels (b) and (c) show two states of the liquid-air
interface that have the same liquid-air area and different solid-liquid
area.
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onstrated for heterogeneous surfaces41 that the averaging concept
of Wenzel, Cassie, and Baxter is fully justified when the drop
is sufficiently large compared with the scale of heterogeneity.
It is important to emphasize that the averaging concept cannot
be expected to hold when the drop is not sufficiently large.
Therefore, this concept will be applied also in the present analysis,
assuming that the ratio of drop size to roughness scale is
sufficiently large. Numerical demonstrations41 seem to suggest
that a ratio of 2-3 orders of magnitude is sufficient; such a ratio
is easily achieved in practice.

In general, the Gibbs energy of a solid-liquid-air system is
given by

G) σlAl + σslAsl + σsAs (4)
where σ is a surface/interfacial tension, A is an interfacial area,
and the subscripts s and l stand for the solid and liquid,
respectively. For simplicity, it is assumed that the effect of gravity
is negligible (as is well-known, gravity affects the shape of the
drop but not its CA). Under this condition, the pressure inside
the liquid drop must be uniform. The air pressure is also uniform
and equal to the atmospheric pressure, since the roughness valleys
are interconnected among themselves and connected to the outside
atmosphere. Therefore, the curvature must be the same for all
liquid-air interfaces; that is, the curvature of the liquid-air
interfaces inside the roughness valleys must equal that of the
outside surface of the drop. Since the fundamental assumption
underlying the concept of averaging the properties of the solid
surface is that the drop radius is much larger than the roughness
scale, the curvature of the liquid-air interfaces inside the
roughness valleys is much lower than that of the roughness
features. In addition, these interfaces have to adjust their shape
in such a way that the actual contact angle with each solid surface
of the roughness features will be the ideal contact angle.44 This
condition can be fulfilled in accord with the previous one by
having positive and negative radii of curvature that still make
the mean curvature very low. However, such a situation is not
amenable to analytical formulation and requires difficult numerical
calculations for each specific case. Therefore, as a first order
approximation, the low curvature of these interfaces is assumed
to imply that they are planar.

Also, because of the assumption that the drop is large compared
with the scale of roughness, the volume of liquid inside the
roughness valleys is negligible compared with the drop volume.
This can be demonstrated by a simple order of magnitude analysis.
The volume of the liquid in the roughness valleys can be estimated
by πRb

2h/2, where Rb is the radius of the base of the drop, h is
a typical depth of the roughness valleys, and the porosity of the
roughness layer is assumed, for simplicity, to be 50%. The volume
of the drop is conservatively estimated, by assuming a contact
angle of 90°, to be 2πRb

3/3. The ratio of these volumes is ∼h/Rb.
With typical orders of magnitude of h ∼ O[1 µm] and Rb ∼ O[1
mm], the volume of the liquid in the roughness valleys is indeed
negligible. Similarly, the projected area of the perturbations in
the contact line is negligible compared with the base area of the
drop. In addition, line tension effects are assumed negligible.45

The interfacial areas and drop radius can be calculated as
follows. The liquid-air interfacial area consists of two parts, the
outside interface of the drop (a spherical cap) and the liquid-air
interface within the roughness valleys:

Al ) 2πR2(1- cos θ)+ flπR2 sin2 θ (5)
Here, R is the radius of the spherical drop, θ is the geometric
APCA (the term geometric implies that this is not necessarily

an equilibrium APCA), and fl is the fraction of the base area of
the drop which is exposed to the air inside the roughness valleys
(0 e fl e 1 corresponds to (1 - f) in eq 2). The solid-liquid
interfacial area is given by

Asl )πR2fsl sin2 θ (6)

where fsl is the wetted solid area per unit base area of the drop
(fsl may be greater than 1, and it corresponds to rf f in eq 2). The
main point in the present analysis is that, unlike in the theory
underlying eq 2, fsl is not a single-valued function of fl.

The solid-air interfacial area is simply expressed as the
difference between the total solid surface area (which is constant),
Atotal, and the wetted solid area:

As )Atotal -Asl )Atotal -πR2fsl sin2 θ (7)

The drop radius is related to its volume by

R2 ) (3V
π )2 ⁄ 3

(2- 3cos θ+ cos3 θ)-2 ⁄ 3 (8)

Introducing eqs 5–8 into eq 4, the expression for the Gibbs energy
can be written in the following dimensionless form

G * ≡ G

σlfπ
1 ⁄ 3(3V)2 ⁄ 3

)F-2 ⁄ 3(θ)(2- 2cos θ-Ω sin2 θ)

(9)

where

F(θ) ≡ (2- 3cos θ+ cos3 θ) (10)

and

Ω ≡ fsl cos θY - fl (11)

It should be noted that Atotal is a constant that does not affect the
minimization; therefore, it is taken as zero, for convenience. For
single-valued roughness topographies, fsl is a single-valued
function of fl. Therefore, the CB equation and the feasibility
condition could be developed by considering G* to be a function
of two independent variables: θ and fl (that corresponds to (1 -
f) in eq 2).27 In the present case, instead of fl, a different
independent variable is required, of which fsl and fl are single-
valued functions. To this end, it is convenient to use z, the depth
of liquid penetration beneath the top of the roughness peaks, and
have fsl ) fsl(z) and fl ) fl(z).

The necessary conditions for local extrema consist of
vanishing of the first partial derivatives (assuming the function
is differentiable). Applying these conditions to G* one gets

∂G*
∂z

)-F-2 ⁄ 3(θ) sin2 θ(cos θY

dfsl

dz
-

dfl

dz)) 0 (12)

∂G*
∂θ

) 2F-5 ⁄ 3 sin θ(Ω- cos θ)(1- cos θ)2 ) 0 (13)

Since (4 > F > 0) for θ > 0, eq 13 is fulfilled (for θ > 0) when

cos θ ≡ cos θCB )Ω) fsl cos θY - fl (14a)

This generalized equation has the same form as the CB
equation; therefore, in order to avoid confusion, it is suggested
to continue using the term “CB equation”. For single-valued
roughness topographies, this equation is indeed identical to
the CB equation; the generalization covers the case for which
fsl is not related to fl in a unique way. Equation 13 is also
fulfilled when

(44) Wolansky, G.; Marmur, A. Langmuir 1998, 14, 5292–5297.
(45) Marmur, A.; Krasovitski, B. Langmuir 2002, 18, 8919–8923.
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θ)π (14b)

Equation 12 is fulfilled when

dfsl ⁄ dz

dfl ⁄ dz
) (cos θY)-1 (15a)

This equation is equivalent to the statement that the actual contact
angle, which the liquid makes with the solid inside the roughness
valleys, must be the Young contact angle,27 as will be later
demonstrated. Equation 12 is also fulfilled when

θ)π (15b)

Similarly to the conclusion in the previous analysis,27 the only
two meaningful combinations of the above four equations are
as follows: (a) the contact angle being determined by eq 14a,
with z being determined by eq 15a, and (b) θ ) π and z ) 0.
If both situations are possible and different from each other, the
former turns out to be the more stable one, since it is associated
with a lower contact angle.

As previously realized,27 in addition to eqs 14a and 15a, the
following condition must be met for a local extremum to exist:

AC-B2 > 0 (16)

where (assuming that the first derivatives are differentiable)

A ≡ ∂
2G*

∂z2
)-F-2 ⁄ 3 sin 2θ(cos θY

d2fsl

dz2
-

d2fl

dz2) (17)

B ≡ ∂
2G*

∂θ ∂ z
) 2F-5 ⁄ 3 sin θ(1- cos θ)2(cos θY

dfsl

dz
-

dfl

dz)
(18)

and

C ≡ ∂
2G*

∂θ2
) 2F-5 ⁄ 3(Ω- cos θ)[cos θ(1- cos θ)2 +

2sin2 θ(1- cos θ)- 5F-1 sin4 θ(1- cos θ)2]+
2F-5 ⁄ 3 sin2 θ(1- cos θ)2 (19)

When AC - B2 ) 0, there may be, but does not need to be, a
local extremum, and the function needs to be further checked in
order to verify it. If eq 16 is not fulfilled, the Gibbs energy has
a saddle point (see an example in Figure 4a, which is discussed
in detail below) and the minimum is found at the border value
of fl ) 0, namely, at the Wenzel (homogeneous wetting) regime.

At the fsl and fl values that are necessary for a local minimum,
B ) 0, by eqs 18 and 15a. Therefore, the existence of local
extrema is determined only by the value of AC. For θ given by
eq 14a

AC)-2F-7 ⁄ 3 sin4 θ(1- cos θ)2(cos θY

d2fsl

dz2
-

d2fl

dz2)
(20)

Since F is always positive for θ > 0, a local extremum in G*
exists only if

d2fl

dz2
- cos θY

d2fsl

dz2
> 0 (21)

This is the generalized feasibility condition, which is markedly
different from the one developed for the single-valued topography,
eq 3. The nature of the extremum is determined by the sign of
A: it is a minimum when A > 0.27 According to eqs 17 and 20,
the sign of A is the same as the sign of AC. Thus, if the feasibility
condition is fulfilled, the extremum must be a minimum.

Results and Discussion

The Gibbs energy of a drop on a rough surface depends on
two independent variables: the extent of penetration into the
roughness valleys and the geometric APCA of the drop. These
two variables must be considered simultaneously when deter-
mining the minimum in the Gibbs energy, that is, the equilibrium
state. An analysis of the local CA inside the roughness valleys,
for example, without simultaneously considering the APCA of
the whole drop may be misleading. Moreover, as shown in this
paper and its precedent,27 it is insufficient to consider only the
equilibrium conditions for both the APCA, eq 14a, and the local
CA inside the roughness valleys, eq 15a. The analysis must also
show that the energy does not have a saddle point (as in Figure
4a) when the two first derivatives equal zero (eqs 14a and 15a).
This is the meaning of the feasibility condition.

For single-valued roughness topographies, the left-hand side
of eq 15a is always negative. This is so, because for such
topographies fl (the fraction of the base area of the drop that is
exposed to the air inside the roughness valleys) decreases when
the liquid penetrates more deeply into the roughness, whereas
fsl (the wetted solid area per unit base area of the drop) always
increases. Therefore, equilibrium in the heterogeneous wetting
regime for single-valued roughness topographies can be attained
only for hygrophobic materials (cos θY < 0). The main questions
asked in this paper are as follows: (a) Can the heterogeneous
wetting regime exist for low Young contact angles (<90°) due
to the multivalued nature of the roughness topography? (b) Can
high APCAs as needed for superhygrophobicity be achieved in
these heterogeneous wetting situations? The interesting idea of
making hygrophobic surfaces from hygrophilic materials was
suggested43 and demonstrated1–3,8 without considering the
feasibility condition, eq 21. However, as will be shown below,
the role of this condition is crucial in determining whether this
idea is possible.

In principle, eq 15a shows that in order to get equilibrium in
the heterogeneous regime for a rough, hygrophilic material (cos
θY > 0) the derivative, dfl/dz, must be positive. This is so, since
dfsl/dz is positive by definition. Thus, such an equilibrium state
may be achieved at the positions where the liquid-air interfacial
area increases upon further penetration. Referring to the simple
examples in Figure 1a, these positions would be located at the
lower part of the convex features (e.g., as in Figure 1c) or the
upper part of the concave features. For roughness topographies
that combine both convex and concave features, there may be
multiple equilibrium positions.

However, to determine whether these states are in stable or
unstable equilibrium, eq 21 is needed. Clearly, this equation
indicates that d2fl/dz2 should be as high as possible and d2fsl/dz2

should be as low as possible for the equilibrium to be stable
when a hygrophilic material is used. However, it appears to be
difficult to derive general conclusions from the feasibility
condition for all types of surface topographies, mainly because
it involves second derivatives. Therefore, while eq 21 is general
for all roughness topographies, it is reasonable to first study very
simplified, specific examples that will yield hints about the
expected behavior in more general situations.

Two very simplified geometries will be studied below:
cylindrical (two-dimensional) grooves and cylindrical protrusions
(please note that the two-dimensional nature of the roughness
features in these two examples does not imply that the drops put
on the surface are two-dimensional). For the cylindrical grooves,
simple calculations lead to
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(fsl)cg ) 1- 2F sin �o + 2F(�-�o) (22)

where the subscript cg stands for cylindrical groove, F (<0.5)
is the radius of the circular cross section of the groove, given
as a fraction of the size of the unit cell of the surface, � is
the angle between the radius connecting to a given point on
the circle and the vertical axis, and �o is the value of � at the
groove opening (see Figure 2a for the definitions of the geometric
parameters). The derivatives of fsl are given by

d( fsl)cg

dz
) 2

sin �
(23)

d2( fsl)cg

dz2
)- 2cos �

F sin3 �
(24)

In addition

( fl)cg ) 2F sin � (25)

d( fl)cg

dz
) 2cot � (26)

d2( fl)cg

dz2
)- 2

F sin3 �
(27)

Figure 3 demonstrates the multivalued nature of the dependence
of (fsl)cg on (fl)cg.

The equilibrium condition, eq 15a, turns into

d( fsl)cg ⁄ dz

d( fl)cg ⁄ dz
) 1

cos �
) 1

cos θY
(28)

and demonstrates that the Young contact angle must be locally
achieved (� ) θY at the equilibrium position of the liquid-air
interface inside the groove). The feasibility condition, eq 21,
together with eqs 24, 27, and 28 leads to

[2(cos2 θY - 1)

F sin3 θY
]

cg

> 0 (29)

The numerator of the left-hand side of eq 29 is always negative,
while the denominator is always positive. Thus, the feasibility
condition cannot be fulfilled inside a cylindrical groove,
irrespective of its size, opening size, or the Young contact angle.
Figure 4a shows an example of the Gibbs energy for a drop on
a surface with cylindrical grooves, as it depends on the two
independent variables: the extent of penetration into the depth
of the roughness, z, and the geometric APCA of the drop, θ. This
example (F ) 0.2 and θY ) 70°) clearly shows the saddle point
and demonstrates the physical meaning of the feasibility condition:
even if the local geometric CA inside the groove equals the
Young CA, this is not an equilibrium state, since the Gibbs
energy is not at a local minimum. Realistic roughness topographies
are not necessarily similar to cylindrical grooves, but the present
result may suggest that concave parts of roughness topographies
may not support equilibrium of the liquid-air interface, even if
the local Young CA can be achieved.

For cylindrical protrusions, the required expressions are
given in the following (see Figure 2b for the definitions of the
geometric parameters). These expressions are valid for z < Z,
where Z is the height of the protrusion; the case z ) Z is not

treated here, since it represents the homogeneous (Wenzel) wetting
regime.

( fsl)cp ) 2F� (30)

where the subscript cp stands for cylindrical protrusions. The
first and second derivatives of fsl in this case are identical to
those given by 23 and 24, respectively:

d( fsl)cp

dz
) 2

sin �
(31)

d2( fsl)cp

dz2
)- 2cos �

F sin3 �
(32)

In addition

( fl)cp ) 1- 2F sin � (33)

d( fl)cp

dz
)-2cot � (34)

d2( fl)cp

dz2
) 2

F sin3 �
(35)

Again, the multivalued nature of the dependence of (fsl)cp on
(fl)cp is demonstrated in Figure 3.

The equilibrium condition, eq 15a, turns in this case into

d( fsl)cp

dfl
)- 1

cos �
) 1

cos θY
(36)

and, again, demonstrates that the Young contact angle must be
locally achieved (� ) π - θY at the equilibrium position). The
feasibility condition, eq 21, together with eqs 32, 35, and 36
leads to

Figure 2. Geometrical definitions of (a) cylindrical grooves and (b)
cylindrical protrusions.

Figure 3. Multiple-valued dependence of fsl on fl for cylindrical grooves
and cylindrical protrusions.
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[2(1- cos2 θY)

F sin3 θY
]

cp

> 0 (37)

This condition is always fulfilled, so the feasibility condition
never denies a CB equilibrium for cylindrical protrusions. For
hygrophilic materials, the location of the liquid-air interface at
equilibrium must be at the lower parts of the cylindrical
protrusions, since only there the local geometric CA may equal
the Young CA. Figure 4b shows an example of the Gibbs energy
for a drop on a surface with cylindrical protrusions (F ) 0.2 and
θY ) 70°). This figure clearly shows the local minimum in the
Gibbs energy. Again, realistic roughness topographies are usually
not similar to cylindrical protrusions, but this result may hint that
the lower convex parts of multivalued roughness topographies
may support equilibrium of the liquid-air interface for Young
CAs that are lower than 90°.

For surfaces with cylindrical protrusions, the CB equation
turns into

cos θCB ) 2F[sin θY + (π- θY)cos θY]- 1 (38)

In order for the surface to appear hygrophobic (cos θCB < 0)

F < 1
2[sin θY + (π- θY)cos θY]

(39)

This equation shows that the possibility of making a hygrophobic
surface from a hygrophilic material for cylindrical protrusions
depends on the radius of the protrusion relative to the unit cell
size: the smaller the radius, the more hygrophobic the surface.
This makes sense, since the more distant are the protrusions
from each other there is more room for a liquid-air interface,
which is the source of hygrophobicity. For Young contact angles
of 90° and above, any radius of the cylindrical protrusions may
lead to a hygrophobic surface (cos θCB < 0). This is so, since
for θY ) 90° F should be less than 0.5, which is true anyway,
by definition. For the extreme case of a completely hygrophilic
material, θY ) 0°, it may, in theory, be possible to get a
hygrophobic surface if F is smaller than 1/(2π) ) 0.159. The
practicality of this surprising result is discussed below. For any
intermediate case of a hygrophilic material (0 < θY < 90°), the
theoretical possibility of making a hygrophobic surface of
cylindrical protrusions is given by eq 39, based on the
corresponding maximum value of F.

Figure 5 demonstrates the specific predictions of eq 38 by
showing the CB APCAs for two values of the dimensionless
radius of the cylindrical protrusions. These calculations were
done for protrusions, the cross section of which is almost a full
circle, to allow all possible positions for the liquid-air interface.
For F ) 0.4, for example, the effect is mild: hygrophobicity is
achieved only for θY > ∼81°, and CAs needed for superhy-
grophobicity (θCB > 150°) cannot be achieved with currently
available materials (θY < ∼120°). However, for F ) 0.2, the
results are much better: hygrophobicity is achieved for θY >
∼41°, and the lower limit of the CA required for superhygro-
phobicity is reached for θY ) ∼120°. As mentioned above, for
this very simplified example of cylindrical protrusions, the
hygrophobic state is achieved when the liquid-air interface is
located at the lower parts of the protrusions. The more hygrophilic
the material (the lower the Young CA), the closer the liquid-air
interface must be to the bottom of the protrusion. For example,
in the extreme case of θY) 0°, the protrusion has to be a complete
circle, and the liquid-air interface must touch it at the bottom.
This is, obviously, impractical, since the liquid-air interface
cannot stay stable at a zero distance from the base solid surface
without wetting it and getting the drop into the Wenzel regime.
So, keeping a distance between the liquid-air interface and the
base solid surface is practically possible only for Young CAs
above a certain value, which needs to be determined for each
specific case.

Moreover, the existence of hygrophobic surfaces made from
hygrophilic materials is not only a question of thermodynamic
feasibility. It is also a question of thermodynamic stability.19

The energy of the drop in the heterogeneous wetting (CB) regime
has to be compared with the energy in the homogeneous (Wenzel)
regime; the state that leads to the lower CA turns out to be the
more stable one. The Wenzel equation for the simplified example
of surfaces with cylindrical protrusions is given by

cos θW ) [1+ 2F(�Z - sin �Z)]cos θY (40)

where �Z is the value of � at the protrusion base (z ) Z). Figure
5 demonstrates the comparison between the CB and Wenzel

Figure 4. Gibbs energy of the system for (a) a surface with cylindrical
grooves and (b) a surface with cylindrical protrusions. F ) 0.2 and θY

) 70°. Note the saddle point in (a) and the true local minimum in (b).
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APCAs for such surfaces. The point where the Wenzel and the
CB lines cross each other is the transition between the two regimes
(see arrows in Figure 5). As mentioned above, the value of �Z

for these calculations was taken as 180° (full circle), since the
transition points were found out to be relatively insensitive to
this value. It can be seen that, when F is smaller (higher θCB),
the transition between the two regimes occurs at a higher value
of θY. Thus, the stability consideration may have a negative
effect on the possibility of making hygrophobic surfaces from
hygrophilic materials. Again, this conclusion is quantitatively
derived here for a very simplified roughness topography in order
to point out the problem. The implications of this point will have
to be studied separately for each specific topography.

As stated in the Introduction, a superhygrophobic (liquid-
repellent) surface is defined by a sufficiently high APCA and a
sufficiently low roll-off angle. The latter is achieved when CA
hysteresis is minimized, since then it is difficult for a drop sitting
on a tilted surface to find an equilibrium position for both its
front and back ends. The CB regime for “regular,” single-valued
roughness topographies offers a solution to both requirements.
First, the APCA is high due to the large area fraction of the drop
base that is exposed to the air inside the roughness valleys (low
value of f in eq 2). Second, for the same reason, hysteresis is
minimized by the homogeneity of the liquid-air interface inside
these valleys. The situation may be more complex with
multivalued roughness topographies, since the liquid-air interface
must penetrate more deeply into the roughness valleys (e.g., in
the cylindrical protrusions case, it must be located at the lower
parts of the protrusions). Consequently, the solid-liquid
interfacial area seems to necessarily be larger than in the single-
valued roughness case, and hysteresis may be more pronounced.
The calculation of the hysteresis range is beyond the scope of

the present paper; however, it is clear that the challenge of
designing a superhygrophobic surface from a hygrophilic material
requires optimization of the topography in such a way that
hysteresis will be minimized while the APCA will be maximized.

Summary and Conclusions

It is, in theory, possible to make a hygrophobic (or even
superhygrophobic) surface from a hygrophilic material if the
roughness topography is multivalued. The hygrophobicity in such
situations is based on the heterogeneous wetting regime, where
air is trapped beneath the liquid inside the roughness valleys.
The present theoretical discussion thus supports experimental
observations of such situations.1–3,8

However, not every multivalued topography can support the
heterogeneous wetting regime, even if the local Young CA can
be materialized inside the roughness valleys. It does happen only
if the feasibility condition, eq 21, is fulfilled, which means that
the Gibbs energy does not have a saddle point. This conclusion
is the main novel result of the present analysis.

The present calculations were done for two examples of very
simplified roughness topographies. The analysis needs to be
repeated for each specific topography; however, the present results
seem to suggest that concave parts of roughness topographies
may not enable a CB state, while convex roughness features may
enable the formation of hygrophobic surfaces from hygrophilic
materials. The liquid-air interface needs to be located at the
lower parts of the convex features in order to make the actual
CA inside the roughness valleys equal to the Young CA.

Even when the heterogeneous wetting regime may be feasible
on a surface made from a hygrophilic material, the question of
stability may hamper the usefulness of the system. A comparison
with the energy of the homogeneous wetting regime needs to be
made in each case to determine which of the regimes is more
stable. The challenge in forming hygrophobic surfaces from
hygrophilic materials seems to lie in designing surface topog-
raphies that will lead to a very high contact angle that is also
stable. An additional part of the challenge is to form a surface
that will have minimal CA hysteresis in order to lower as much
as possible the roll-off angle.
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Figure 5. CB (full lines) and Wenzel (dashed lines) contact angles for
a surface made of cylindrical protrusions. The numbers indicate the
normalized radius of a protrusion. The arrows indicate the transition
points between the two regimes. Also shown, by thin dotted lines, are
the line of equality between the APCA and the Young CA, and the line
at an APCA of 90° that distinguishes between hygrophilicity and
hygrophobicity.
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