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Below are four exercises that go back on what was seen in the lecture. The calculations in
each of them are simple. Try to do them with minimal math!

1 Which flow is a low Re flow?

Observe the two movies marked Taylor 1 and Taylor 2.

• Which one of the situations corresponds to a low Re flow? How do you know it? There
are severeal indeces.

• What is the main fluid property that varies between the two movies?

• In the high Reynolds number case: Estimate the viscous diffusion time from the formula,
suposing that the liquid is water. How does it compare with the time that you would
extract from the movie? Why?

Fig. 1- Screen shot from movies.
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1.1 Answer

The movie Taylor 2 is the low Re case. You can see this through different aspects of the fluid:

1. In the movie Taylor 1, we see waves on the surface of the liquid. The viscosity of the
second case dissipates the waves very quickly and so we do not see them.

2. In the movie Taylor 2, we see that it takes a very long time for the liquid, which had
wetted the cork, to drain. This is a sign that the viscous effects are slowing down the
draining

3. Finally, the liquid reacts almost immediately to the moving bowl in the second case, a
sign that the viscous diffusion of momentum is very quick.

The main difference between the two movies is the viscosity.
The diffusion time in the low Re case is almost zero.
In the high Re case, I would have estimated that τdiff = L2/ν, with L ' 3 cm and µ =
0.01 cm2/s. This would give τdiff ' 1000 s, which is much longer than what we observe!
This means that the momentum is being transfered by a different mechanism than just viscous
diffusion alone. We can imagine that there are vortices that are formed which drive the motion
of the cork, for example. Probably what makes the time much shorter is that the bowl is
rotating and not just translating... This leads to a phenomenon called “Ekman Pumping”
but it is too complicated for this course.
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Fig. 2- Two microfluidic circuits.



1. Consider the microfluidic circuit in Fig. 1(a). Suppose that the liquid that is pushed is
water (µ = 10−3 Pa.s). What is the highest Reynolds number in this circuit? Can we
talk about Stokes flows everywhere in the system? The dimensions of each element are
the following:

Element Width or Radius Length

Syringe 2 mm 4 cm
Tube (×2) 0.5 mm 20 cm
Microchannel width=100 µm 2 cm

height=20 µm

2. Calculate the pressure drop in each one of the elements of the circuit. Which element
provides the dominant resistance? What would the flow rate be if the syringe pump is
replaced with a pressure source that applies P = 104 Pa?

3. Now replace the single microfluidic channel by the network shown in part (b). The
heights of all channels are all the same (h = 20 µm). The widths are: (i) 400 µm. (ii)
200 µm. (iii) 300 µm (iv) 100 µm. What is the flow in each channel? What is the effect
of the location of each channel? What would the total flow rate be if the syringe pump
is replaced with a pressure source with P = 104 Pa?.

2.1 Answers

This is mainly just a set of calculations to apply the formulas given in the slides. I am
attaching an Excel sheet that does the actual calculations.

1. the highest Reynolds number is in the micro-channel: Re = 0.3. This is because the
velocity increases in each tube as 1/area, while the Reynolds number scales with the
length. That means that the fluid accelerates more than the length decreases, which
implies that the Reynolds number increases as the size of the tube/channel decreases.
Naturally, we are still in the low Reynolds number regime and the Stokes flows still
apply

2. The pressure drops can simply be calculated from the two formulas RQ = ∆P . We
find that the pressure drops in the syringe and in the tubes are negligible compared
with the pressure drop in the micro-channel. The pressure drop in the microchannel is
around ∆P = 104 Pa, or 0.1 atm. So replacing the syringe pump with a pressure source
applying 104 Pa would not change anything.

3. In the network, we have to use the electrical circuit analogs. The total resistance can
be found by setting:
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Note that Rtotal is smaller than all of the other resistances.

The pressure across the system can therefore be obtained by setting ∆P = Q · Rtotal,
which yields ∆P ' 103 Pa. Then using again Qi = ∆P/Ri for each path, we find the
flow rate in each channel. Note that their sum will yield the total Q.



Now if we replace the syring pump with a pressure source pushing at P = 104 Pa again,
we will multiply all of the flow rates by 10 since the resistance of each channel remains
constant but the pressure drop across it increases ten-fold.

3 The effect of the presence of a bubble

Consider a microchannel such as the one shown in Fig. 2a. Imagine that an air bubble is
stuck in the syringe. Its volume is 1 µL (ignore surface tension effects).

1. What is the radius that corresponds to this bubble volume?

2. By how much does the bubble compress for a flow Q = 30 nL/sec? How does that
change if Q = 300 nL/sec? (Recall perfect gas law).

3. Now suppose that the flow is suddenly switched off and the bubble wants to return to the
volume it has at atmospheric pressure. From the resistance of the channels calculated
above and supposing that the pressure in the bubble is constant during this time (for
example take the average value of pressure), estimate how long it takes for the flow to
stop.

4. What would the “exponential” time be if we calculate it from the RC equivalent circuit?

The moral of this story is that you should avoid having bubbles in your systems!

3.1 Answers

1. The radius for 1 µL is around 1 mm

2. The ideal gas law states that PiVi = PfVf , with Pi = 105 Pa and Vi = 10−9 m3. So we
get that Vf = PiVi/Pf , which yields Vf (30) = 0.9 µL and Vf (300) = 0.5 µL.

3. So we have to drain a volume equivalent to the change in bubble volume, at a pressure
half the initial pressure, knowing that the resistance is 3 × 1014 Pa/m3 as calculated
above.
We can calculate Q = ∆P/R, which allows us to get the time required by calculating
(Vi − Vf )/Q. This yields τ = 6 s for the first case (Q = 30 nL/s) and τ = 3 s for the
second case.

4. In reality the process of draining is an exponential with characteristic time scale τ = RC.
C is given in the slides as Ch = P0V0/P

2, where P0 is atmospheric pressure, V0 = 1 µL
is the volume at P0, and P 2 is the pressure just when the syringe pump is turned off.
This yields: RC(30) = 3 s and RC(300) = 1 s.



4 Mixing

(a)

(b)

Fig. 3- Mixing in microchannels.

1. Consider the channel in Fig. 3a. The main channel has the same dimensions as the
channel in Fig. 2a but it has two inputs. Eeach of the inputs is connected to a syringe
pushing at Q1 = Q2 = 15 nL/sec, with one pushing blue dye and the other pushing
red dye. Considering that the diffusion coefficients of the red and blue dyes are D =
10−9 m2/s, what is the percentage of the two two dyes that mixes in a channel that is
2 cm long?

2. The channel that is shown in part (b) was designed to generate a gradient of dye in the
downstream channel (see the wide channel on the right hand side). How does it work?



4.1 Answers

1. The distance that is diffused by each species into the other one can be estimated by
saying that wd =

√
Dτ , where D = 10−9 m2/s and τ is ths time to travel down the

channel. τ = L/U = L/(Q/wh) = 1.33 s. The distance that each of the species diffuses
is wd = 36 µm. So we can expect that 36% of the liquid has been mixed.

2. The channel is supposed to make a gradient of color. The three colors initially enter
the channel and mix two-by-two at the first junction. Each zig-zag allows the colors
to mix thoroughly, before reaching the next junction where the neighboring colors mix
two-by-two again. Note that each exit of a channel leads to a bifurcation: Half of the
liquid goes left and half goes right. This continues until all of the liquid reaches the
wide channel, in which we now have a continuous spectrum of colors.


