Micro-scale flows Charles N. Baroud

Ecole Polytechnique, France

TRAINING SCHOOL: Fluids and Solid Interfaces, 12–15 April 2011, Sofia, Bulgaria

dimanche 3 avril 2011

What's so special about micro-flows?

Macro-scale flows

Macro-scale flows

Vortices

Micro-scale flows

Macro-scale flows

Time varying

Micro-scale flows

Regular!

Flow lines: DNA chamber Protein chamber

Control lines: Neck valve Sandwich valve Button valve

Macro-scale flows

Turbulent

Macro-scale flows

Regular!

What happens at micro-scale?

- No new physics (sorry!)
- Relative strength of different forces is changed:
- e.g. viscosity becomes dominant over inertia
- Surface to volume ratio grows
- surface effects become dominant over volumetric effects

Surface vs. volume effects

Surface vs. volume effects

- Weight ~ L^3
- Capillary force F_{γ} :
 - Surface tension x (L)
- When *L* decreases:

weight $<< F_{\gamma}$

Outline

- Viscous flows The Reynolds number
- Properties of the Stokes Equation
- Hydraulic circuit analysis
- Molecular diffusion in micro-flows

The fluid particle

Small compared with system size Large compared with molecular scales

How long can we still talk about a fluid?

The fluid particle

Can change velocity in two ways:

- By changing in time
- By moving in space

Define the «material» derivative $\frac{D\vec{u}}{Dt} = \frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u}$

Navier-Stokes equation

Navier-Stokes equation

$$\rho \left[\begin{array}{c} \frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \vec{\nabla} \vec{u} \end{array} \right] = -\vec{\nabla} p + \mu \vec{\nabla}^2 \vec{u}$$

Strongly nonlinear

Many possible solutions!

Navier-Stokes equation

$$\rho \left[\begin{array}{c} \frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \vec{\nabla} \vec{u} \end{array} \right] = -\vec{\nabla} p + \mu \vec{\nabla}^2 \vec{u}$$

Define «characteristic» scales

The Reynolds number:

Dimensionless Navier-Stokes equation

$$Re\left[\begin{array}{c} \frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \vec{\nabla} \vec{u} \end{array}\right] = -\vec{\nabla}p + \vec{\nabla}^2 \vec{u}$$

Here: Length, velocity, and physical parameters have all been hidden in the Reynolds number.

The behavior becomes a function of a single parameter: Re

Micro-scale flow

Water flowing around a cylinder of 100 µm diameter at 100 µm/s

$$\mu = 10^{-3} \text{ Pa s}$$

 $\rho = 10^{3} \text{ kg/m}^{3}$
 $U = 100 \ \mu \text{m/s}$
 $L = 100 \ \mu \text{m}$

$$Re = \frac{\rho UL}{\mu} = 10^{-2}$$

Understanding the solutions of the N-S equation at low *Re* will allow us to understand µ-scale flows.

Low Reynolds number

$$Re\left[\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \vec{\nabla} \vec{u}\right] = -\vec{\nabla}p + \vec{\nabla}^2 \vec{u}$$

a nonlinear

Replace a nonlinear equation with a linear one

$$\vec{\nabla}p = \nabla^2 \vec{u}$$

The Stokes Equation

Characteristics of Stokes Flows

• Laminar: no turbulence and no advective mixing

Whitesides lab, Harvard, 1998

Characteristics of Stokes Flows

- Laminar: no turbulence and no advective mixing
- Linearity implies:
 - Unique solution for given boundary conditions
 - Reversibility:

A change of $p \rightarrow -p$ switches $u \rightarrow -u$

- Streamlines are not modified if total flow rate changes
- Superposition of solutions:
 When boundary conditions are added, solution is sum of individual solutions
- Stokes flows correspond to a minimum of energy dissipation

This flow is not the same as its reverse

This flow is not the same as its reverse

This flow cannot be solution to Stokes equation

Increasing complexity of flows with increasing Reynolds number: flow past a circular cylinder

Reference: Van Dyke, Album of Fluid Motion

Classical solutions of Stokes Flows

Systematically change the aspect ratio of the cavity: note appearance of one or more eddies

G.I. Taylor demonstrates reversibility

Interpretation of the Reynolds number I

- Stagnation pressure on a solid Inertial stresses $p \sim \rho U^2$
- Shear stress due to the velocity gradient

Interpretation of the Reynolds number II

Advection time

$$\tau_{adv} \sim \frac{L}{U}$$

Interpretation of the Reynolds number II

Change in boundary velocity transmitted via a diffusive process

• Viscous diffusion time

$$\tau_{diff} \sim \frac{L^2 \rho}{\mu} = \frac{L^2}{\nu}$$

$$[\nu] = \frac{L}{T^2}$$

Kinematic viscosity

Boundary moving below a highviscosity oil

Interpretation of the Reynolds number II

Viscous diffusion time

$$\tau_{diff} \sim \frac{L^2 \rho}{\mu} = \frac{L^2}{\nu} \qquad \qquad [\nu] = \frac{L}{T^2}$$

Advection time

$$\tau_{adv} \sim \frac{L}{U}$$

$$\left| \begin{array}{c} \frac{\tau_{diff}}{\tau_{adv}} \sim \frac{L^2}{\nu} \cdot \frac{U}{L} \sim \frac{UL}{\nu} = Re \end{array} \right|$$

Back to N-S. to Stokes equation

Two basic flows

- Boundary driven flow in a gap (Couette flow)
- Pressure driven flow in a tube (Poiseuille flow)

Couette flow

No pressure term. Stokes equation:

$$\mu \frac{\partial^2 u}{\partial y^2} = 0$$

$$u(y=0) = 0 \quad u(y=h) = u_H$$

$$u = u_H\left(\frac{y}{h}\right)$$

Shear stress on the wall: $\tau_{xy} = \mu \frac{\partial u}{\partial y} = \mu \frac{u_H}{h}$ For a plate of area A

$$F = A \cdot \tau_{xy}$$

Force on a falling sphere

Settling velocity $U = \frac{2}{9} \frac{g\Delta\rho}{\mu} R^2$

Verify drag force scaling

Left sphere twice as big as right sphere

Poiseuille flow

Assume constant pressure gradient

$$\nabla p = \frac{\partial p}{\partial z} = cst$$

Velocity inside cylindrical tube of radius R

$$u_z = \frac{-1}{4\mu} \frac{\partial p}{\partial z} (R^2 - r^2)$$

Flow rate:
$$Q = -\frac{\pi R^4}{8\mu} \frac{\partial p}{\partial z}$$

Tube of length *l*

$$Q = \frac{\pi R^4}{8\mu L} \Delta p = \frac{\Delta p}{\mathcal{R}}$$

Hydrodynamic resistance

$$\mathcal{R} = \frac{8\mu L}{\pi R^4}$$

You don't need to solve the fluids equations to know the flow rate

Microchannel

$$Q \simeq \frac{wh^3}{12\mu L} \left[1 - 6\left(\frac{2}{\pi}\right)^5 \frac{h}{w} \right] \Delta p$$

Hydrodynamic resistanceIf
$$h < < w$$
 $\mathcal{R} = \frac{12\mu L}{wh^3} \left[1 - 6 \left(\frac{2}{\pi} \right)^5 \frac{h}{w} \right]^{-1}$ $\mathcal{R} = \frac{12\mu L}{wh^3}$

Strong dependence on h

Analogy with electrical circuits

Electrical	Fluidic
Voltage drop (ΔV)	Pressure drop (Δp)
Current (I)	Flow rate (Q)
Resistance	Fluidic resistance (\mathcal{R})
Capacitance (\mathcal{C})	Mechanical compliance (\mathcal{K})
Inductance (\mathcal{L})	-Inertia

Compliance

Compressibility is a way to store pressure: Fluidic capacitance

Compliance associated with an air bubble:

$$C_h = \frac{p_0 V_0}{p^2} \longrightarrow \frac{\partial P}{\partial t} = \frac{1}{C_h} Q$$

R-C circuit

Hydrodynamic resistance $P = \mathcal{R}Q$

Compliance

 $\frac{\partial P}{\partial t} = \frac{1}{C_h}Q$

Therefore:

$$\frac{\partial P}{\partial t} = \frac{1}{\mathcal{R}C_h}P$$

$$P(t) \sim e^{-t/\mathcal{R}C_h}$$

Large resistance and large compliance imply that the system will respond very slowly A few words about diffusion

A few words about diffusion

Molecular scale model:

A molecule performs a random walk with a certain step size during every time step.

Mean field model:

A chemical species is transported «down» the concentration gradient

$$\frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial x^2}$$

Useful solutions

Diffusion quickly evens out short-wave variations

Diffusion in a T-channel

How far will the species diffuse?

Time to diffuse whole width $\tau_{diff} \sim \frac{w^2}{D}$

Distance travelled during this time $Z \sim U_0 \tau_{diff} \sim U_0 \frac{w^2}{D}$

How many channel widths?

$$\left|\frac{Z}{w} \sim \frac{U_0 w}{D} = P e\right|$$

Peclet number as ratio of two lengths

Pe vs. Re

$$\left|\frac{Z}{w} \sim \frac{U_0 w}{D} = P e\right|$$

$$\frac{\tau_{diff}}{\tau_{adv}} \sim \frac{L^2}{\nu} \cdot \frac{U}{L} \sim \frac{UL}{\nu} = Re$$

Reynolds number as a Peclet number for momentum transfer