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What’s so special about micro-flows?
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Macro-scale flows
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Micro-scale flows
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Vortices

Macro-scale flows
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Micro-scale flows
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Macro-scale flows Time varying
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Regular!

Micro-scale flows
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Macro-scale flows Turbulent
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Macro-scale flows Regular!
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What happens at micro-scale?

• No new physics (sorry!)

• Relative strength of different forces is changed:

➡ e.g. viscosity becomes dominant over inertia

• Surface to volume ratio grows

➡ surface effects become dominant over 
volumetric effects 
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Surface vs. volume effects
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• Weight ~ L

• Capillary force F :

Surface tension x (L)

• When L decreases:

weight << F

3

γ

γ

Surface vs. volume effects
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Outline

• Viscous flows - The Reynolds number 

• Properties of the Stokes Equation

• Hydraulic circuit analysis

• Molecular diffusion in micro-flows
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The fluid particle

Small compared with system size
Large compared with molecular scales 
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How long can we still talk 
about a fluid?
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The contiuum assumption
The contiuum 

assumption remains 
valid down to a few 

molecular sizes
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The fluid particle

• By changing in time

• By moving in space

Can change velocity in two ways:

Micro-scale flows outline

Charles Baroud

13 april 2011

1 General introduction

As the scale of the problem that we are treating decreases, it is reasonable to ask whether we

can still talk about a fluid or if we need to start discussing discrete molecules.

At scales relevant to “micro-flows”, we can still use the concept of continuum mechanics.

Generally this is still vallid down to the scale of a few Angstroms.

This allows us to define a “fluid particle”, which is neither too small (not an atom, e.g.)

nor too big (small compared to the size of the box we are in). This useful concept will allow

us to move forward.

Two things happen on the micro-scale:

• Viscosity becomes dominant compared with inertial effects

• The surface to volume ratio increases, meaning that surface effects dominate volume

effects.

2 The Navier-Stokes and the Stokes equations

The motion of a fluid particle is described by a velocity field �u. The velocity of the particle

can change in two ways:

Material derivative:
D�u

Dt
=

∂�u

∂t
+ �u ·∇�u (1)

A force balance on this particle leads to the Navier-Stokes Equation:

ρ

�
∂�u

∂t
+ �u ·∇�u

�
= −∇p+ µ∇2�u+ �F (2)

Here we are assuming a Newtonian (viscosity is independent of shear rate) and incom-

pressible (ρ is constant) fluid. The term �F indicates a body force, i.e. a force acting on the

volume of the fluid, not on the boundaries.

We can non-dimensionalize this equation by taking a characteristic value for velocity (U),

for space (L), and taking the material properties of the fluid µ and ρ.
This leads to the definition of Re:

Re =
ρUL

µ
(3)

which is a dimensionless number. This allows us to re-write the NS equation as:

1

Define the «material» derivative
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The momentum equation

«Newton’s law» for a fluid particle 

Pressure
gradient

Viscous
stress

other
body 
forces

Navier-Stokes equation
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1 General introduction

As the scale of the problem that we are treating decreases, it is reasonable to ask whether we

can still talk about a fluid or if we need to start discussing discrete molecules.

At scales relevant to “micro-flows”, we can still use the concept of continuum mechanics.
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nor too big (small compared to the size of the box we are in). This useful concept will allow

us to move forward.

Two things happen on the micro-scale:

• Viscosity becomes dominant compared with inertial effects

• The surface to volume ratio increases, meaning that surface effects dominate volume

effects.

2 The Navier-Stokes and the Stokes equations

The motion of a fluid particle is described by a velocity field �u. The velocity of the particle

can change in two ways:

Material derivative:
D�u

Dt
=

∂�u

∂t
+ �u ·∇�u (1)

A force balance on this particle leads to the Navier-Stokes Equation:

ρ

�
∂�u

∂t
+ �u · �∇�u

�
= −�∇p+ µ�∇2�u+ �F (2)

Here we are assuming a Newtonian (viscosity is independent of shear rate) and incom-

pressible (ρ is constant) fluid. The term �F indicates a body force, i.e. a force acting on the

volume of the fluid, not on the boundaries.

We can non-dimensionalize this equation by taking a characteristic value for velocity (U),

for space (L), and taking the material properties of the fluid µ and ρ.
This leads to the definition of Re:

Re =
ρUL

µ
(3)

which is a dimensionless number. This allows us to re-write the NS equation as:

1

simplify
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The momentum equation

Navier-Stokes equation

Strongly nonlinear
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1 General introduction

As the scale of the problem that we are treating decreases, it is reasonable to ask whether we

can still talk about a fluid or if we need to start discussing discrete molecules.

At scales relevant to “micro-flows”, we can still use the concept of continuum mechanics.

Generally this is still vallid down to the scale of a few Angstroms.

This allows us to define a “fluid particle”, which is neither too small (not an atom, e.g.)

nor too big (small compared to the size of the box we are in). This useful concept will allow

us to move forward.

Two things happen on the micro-scale:

• Viscosity becomes dominant compared with inertial effects

• The surface to volume ratio increases, meaning that surface effects dominate volume

effects.

2 The Navier-Stokes and the Stokes equations

The motion of a fluid particle is described by a velocity field �u. The velocity of the particle

can change in two ways:

Material derivative:
D�u

Dt
=

∂�u

∂t
+ �u ·∇�u (1)

A force balance on this particle leads to the Navier-Stokes Equation:

ρ

�
∂�u

∂t
+ �u · �∇�u

�
= −�∇p+ µ�∇2�u+ �F (2)

Here we are assuming a Newtonian (viscosity is independent of shear rate) and incom-

pressible (ρ is constant) fluid. The term �F indicates a body force, i.e. a force acting on the

volume of the fluid, not on the boundaries.

We can non-dimensionalize this equation by taking a characteristic value for velocity (U),

for space (L), and taking the material properties of the fluid µ and ρ.
This leads to the definition of Re:

Re =
ρUL

µ
(3)

which is a dimensionless number. This allows us to re-write the NS equation as:

1

Many possible solutions!
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The momentum equation

Navier-Stokes equation
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1

Define «characteristic» scales
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The Reynolds number:

Dimensionless
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The momentum equation

Dimensionless Navier-Stokes equation

For a flow on the micro-scale, we can estimate a value of Re as:

µ = 10−3 Pa s (4)

ρ = 103 kg/m3 (5)

U = 100 µm/s (6)

L = 100 µm (7)

(8)

This leads to a value of Re

Re =
ρUL

µ
= 10−2 (9)

This allows us to re-write the NS equation as:

Re

�
∂�u

∂t
+ �u · �∇�u

�
= −�∇p+ �∇2�u+ �f (10)

If Re � 1, we obtain the Stokes Equation:

∇p = ∇2�u+ �f (11)

We will typically consider that �f = 0 here but this needn’t be the case.
This equation is a differential equation for p and u and therefore requires a set of boundary

conditions in order to have a solution.

2.1 Properties of the Stokes equation

1. Laminar: No turbulent mixing. This is both a blessing and a curse

2. Linear: The Stokes equation that describes low Re flows is a linear equation. This leads
to flows that are time reversible, superposable, and unique.

3. Stokes flows minimize energy dissipation

4. Flows in complex networks of channels can be treated like electrical resistor networks.

2.2 Interpretation of the Reynolds number

There are several interpretations of Re, as a ratio of different quantities.

The ratio of two stresses:

• Inertial (stagnation) pressure stress on an object:

p ∼ ρU2 (12)

• Viscious stress on same object:

σ ∼ µ
U

L
(13)

Here: Length, velocity, and physical parameters have all been 
hidden in the Reynolds number.

The behavior becomes a function of a single parameter:
Re
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Micro-scale flow

For a flow on the micro-scale, we can estimate a value of Re as:

µ = 10−3 Pa s (4)
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(8)
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L
(13)

Water flowing around a cylinder of 100 
µm diameter at 100 µm/s 

For a flow on the micro-scale, we can estimate a value of Re as:

µ = 10−3 Pa s (4)

ρ = 103 kg/m3 (5)

U = 100 µm/s (6)

L = 100 µm (7)

(8)

This leads to a value of Re
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ρUL

µ
= 10−2 (9)

This allows us to re-write the NS equation as:

Re

�
∂�u

∂t
+ �u ·∇�u

�
= −∇p+∇2�u+ �f (10)

If Re � 1, we obtain the Stokes Equation:

∇p = ∇2�u+ �f (11)

We will typically consider that �f = 0 here but this needn’t be the case.
This equation is a differential equation for p and u and therefore requires a set of boundary

conditions in order to have a solution.

2.1 Properties of the Stokes equation

1. Laminar: No turbulent mixing. This is both a blessing and a curse

2. Linear: The Stokes equation that describes low Re flows is a linear equation. This leads
to flows that are time reversible, superposable, and unique.

3. Stokes flows minimize energy dissipation

4. Flows in complex networks of channels can be treated like electrical resistor networks.

2.2 Interpretation of the Reynolds number

There are several interpretations of Re, as a ratio of different quantities.

The ratio of two stresses:
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p ∼ ρU2 (12)

• Viscious stress on same object:

σ ∼ µ
U

L
(13)

Understanding the solutions of the N-S 
equation at low Re will allow us to 

understand µ-scale flows.  
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Low Reynolds number

For a flow on the micro-scale, we can estimate a value of Re as:

µ = 10−3 Pa s (4)

ρ = 103 kg/m3 (5)
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(8)
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The Stokes Equation

Replace a nonlinear 
equation with a linear one
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• Laminar: no turbulence and no advective mixing

Characteristics of Stokes Flows

Whitesides lab, Harvard, 1998
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• Laminar: no turbulence and no advective mixing

• Linearity implies:

‣ Unique solution for given boundary conditions

‣ Reversibility:  
      A change of p → -p switches u → -u

‣ Streamlines are not modified if total flow rate changes

‣ Superposition of solutions: 
When boundary conditions are added, solution is sum of 
individual solutions

• Stokes flows correspond to a minimum of energy 
dissipation

Characteristics of Stokes Flows
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Reversibility implies symmetry
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Reversibility implies symmetry
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-
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ρ

�
∂�u

∂t
+ �u · �∇�u

�
= −�∇p+ µ�∇2�u+ �F (2)

Here we are assuming a Newtonian (viscosity is independent of shear rate) and incom-

pressible (ρ is constant) fluid. The term �F indicates a body force, i.e. a force acting on the

volume of the fluid, not on the boundaries.

We can non-dimensionalize this equation by taking a characteristic value for velocity (U),

for space (L), and taking the material properties of the fluid µ and ρ.
This leads to the definition of Re:

Re =
ρUL

µ
(3)

which is a dimensionless number. This allows us to re-write the NS equation as:

1

This flow is not the same as its reverse 
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Reversibility implies symmetry

Micro-scale flows outline

Charles Baroud

13 april 2011

1 General introduction

As the scale of the problem that we are treating decreases, it is reasonable to ask whether we

can still talk about a fluid or if we need to start discussing discrete molecules.

At scales relevant to “micro-flows”, we can still use the concept of continuum mechanics.

Generally this is still vallid down to the scale of a few Angstroms.

This allows us to define a “fluid particle”, which is neither too small (not an atom, e.g.)

nor too big (small compared to the size of the box we are in). This useful concept will allow

us to move forward.

Two things happen on the micro-scale:

• Viscosity becomes dominant compared with inertial effects

• The surface to volume ratio increases, meaning that surface effects dominate volume

effects.

2 The Navier-Stokes and the Stokes equations

The motion of a fluid particle is described by a velocity field �u. The velocity of the particle

can change in two ways:

Material derivative:
D�u

Dt
=

∂�u

∂t
+ �u ·∇�u (1)

A force balance on this particle leads to the Navier-Stokes Equation:

ρ

�
∂�u

∂t
+ �u · �∇�u

�
= −�∇p+ µ�∇2�u+ �F (2)

Here we are assuming a Newtonian (viscosity is independent of shear rate) and incom-

pressible (ρ is constant) fluid. The term �F indicates a body force, i.e. a force acting on the

volume of the fluid, not on the boundaries.

We can non-dimensionalize this equation by taking a characteristic value for velocity (U),

for space (L), and taking the material properties of the fluid µ and ρ.
This leads to the definition of Re:

Re =
ρUL

µ
(3)

which is a dimensionless number. This allows us to re-write the NS equation as:

1

This flow is not the same as its reverse 

This flow cannot be solution to Stokes equation
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Classical solutions of Stokes Flows
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G.I. Taylor demonstrates reversibility
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Interpretation of the Reynolds number I

For a flow on the micro-scale, we can estimate a value of Re as:

µ = 10−3 Pa s (4)

ρ = 103 kg/m3 (5)

U = 100 µm/s (6)

L = 100 µm (7)

(8)

This leads to a value of Re

Re =
ρUL

µ
= 10−2 (9)

This allows us to re-write the NS equation as:

Re

�
∂�u

∂t
+ �u · �∇�u

�
= −�∇p+ �∇2�u+ �f (10)

If Re � 1, we obtain the Stokes Equation:

�∇p = ∇2�u (11)

We will typically consider that �f = 0 here but this needn’t be the case.
This equation is a differential equation for p and u and therefore requires a set of boundary

conditions in order to have a solution.

2.1 Properties of the Stokes equation

1. Laminar: No turbulent mixing. This is both a blessing and a curse

2. Linear: The Stokes equation that describes low Re flows is a linear equation. This leads
to flows that are time reversible, superposable, and unique.

3. Stokes flows minimize energy dissipation

4. Flows in complex networks of channels can be treated like electrical resistor networks.

2.2 Interpretation of the Reynolds number

There are several interpretations of Re, as a ratio of different quantities.

The ratio of two stresses:

• Inertial (stagnation) pressure stress on an object:

p ∼ ρU2 (12)

• Viscious stress on same object:

σ ∼ µ
U

L
(13)

• Stagnation pressure on a solid

For a flow on the micro-scale, we can estimate a value of Re as:

µ = 10−3 Pa s (4)

ρ = 103 kg/m3 (5)

U = 100 µm/s (6)

L = 100 µm (7)

(8)

This leads to a value of Re

Re =
ρUL

µ
= 10−2 (9)

This allows us to re-write the NS equation as:

Re

�
∂�u

∂t
+ �u · �∇�u

�
= −�∇p+ �∇2�u+ �f (10)

If Re � 1, we obtain the Stokes Equation:

�∇p = ∇2�u (11)

We will typically consider that �f = 0 here but this needn’t be the case.
This equation is a differential equation for p and u and therefore requires a set of boundary

conditions in order to have a solution.

2.1 Properties of the Stokes equation

1. Laminar: No turbulent mixing. This is both a blessing and a curse

2. Linear: The Stokes equation that describes low Re flows is a linear equation. This leads
to flows that are time reversible, superposable, and unique.

3. Stokes flows minimize energy dissipation

4. Flows in complex networks of channels can be treated like electrical resistor networks.

2.2 Interpretation of the Reynolds number

There are several interpretations of Re, as a ratio of different quantities.

The ratio of two stresses:

• Inertial (stagnation) pressure stress on an object:

p ∼ ρU2 (12)

• Viscious stress on same object:

σ ∼ µ
U

L
(13)

• Shear stress due to the velocity gradient

• This yields:

p

σ
∼ ρU2

µU/L
∼ ρUL

µ
= Re (14)

The ratio of two times:

• Advection time:

τadv ∼ L

U
(15)

• Viscous diffusion time:

τdiff ∼ L2ρ

µ
=

L2

ν
(16)

• The ratio yields:

τdiff
τadv

∼ L2

ν
· U
L

∼ UL

ν
= Re (17)

The first interpretation allows us to ignore inertial effects, while the second interpretation

allows us to ignore temporal adjustements.

3 Two basic flows

3.1 Couette flow

For Couette flow, there is no net pressure drop along the channel. However, one of the

boundaries is moving. This yields the equation:

µ
∂2u

∂y2
= 0 (18)

withe boundary conditions:

u(y = 0) = 0 u(y = h) = uH (19)

The solution is that

u = uH
�y
h

�
(20)

The stress that is applied by this flow on the bottom wall is:

τxy(y = 0) = µ
∂u

∂y
= µ

uH
h

(21)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.

Inertial stresses

Viscous stresses
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Interpretation of the Reynolds number II

• Advection time

• This yields:

p

σ
∼ ρU2

µU/L
∼ ρUL

µ
= Re (14)

The ratio of two times:

• Advection time:

τadv ∼ L

U
(15)

• Viscous diffusion time:

τdiff ∼ L2ρ

µ
=

L2

ν
(16)

• The ratio yields:

τdiff
τadv

∼ L2

ν
· U
L

∼ UL

ν
= Re (17)

The first interpretation allows us to ignore inertial effects, while the second interpretation

allows us to ignore temporal adjustements.

3 Two basic flows

3.1 Couette flow

For Couette flow, there is no net pressure drop along the channel. However, one of the

boundaries is moving. This yields the equation:

µ
∂2u

∂y2
= 0 (18)

withe boundary conditions:

u(y = 0) = 0 u(y = h) = uH (19)

The solution is that

u = uH
�y
h

�
(20)

The stress that is applied by this flow on the bottom wall is:

τxy(y = 0) = µ
∂u

∂y
= µ

uH
h

(21)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.

Micro-scale flows outline

Charles Baroud

13 april 2011

1 General introduction

As the scale of the problem that we are treating decreases, it is reasonable to ask whether we

can still talk about a fluid or if we need to start discussing discrete molecules.

At scales relevant to “micro-flows”, we can still use the concept of continuum mechanics.

Generally this is still vallid down to the scale of a few Angstroms.

This allows us to define a “fluid particle”, which is neither too small (not an atom, e.g.)

nor too big (small compared to the size of the box we are in). This useful concept will allow

us to move forward.

Two things happen on the micro-scale:

• Viscosity becomes dominant compared with inertial effects

• The surface to volume ratio increases, meaning that surface effects dominate volume

effects.

2 The Navier-Stokes and the Stokes equations

The motion of a fluid particle is described by a velocity field �u. The velocity of the particle

can change in two ways:

Material derivative:
D�u

Dt
=

∂�u

∂t
+ �u ·∇�u (1)

A force balance on this particle leads to the Navier-Stokes Equation:

ρ

�
∂�u

∂t
+ �u · �∇�u

�
= −�∇p+ µ�∇2�u+ �F (2)

Here we are assuming a Newtonian (viscosity is independent of shear rate) and incom-

pressible (ρ is constant) fluid. The term �F indicates a body force, i.e. a force acting on the

volume of the fluid, not on the boundaries.

We can non-dimensionalize this equation by taking a characteristic value for velocity (U),

for space (L), and taking the material properties of the fluid µ and ρ.
This leads to the definition of Re:

Re =
ρUL

µ
(3)

which is a dimensionless number. This allows us to re-write the NS equation as:

1

Micro-scale flows outline

Charles Baroud

13 april 2011

1 General introduction

As the scale of the problem that we are treating decreases, it is reasonable to ask whether we

can still talk about a fluid or if we need to start discussing discrete molecules.

At scales relevant to “micro-flows”, we can still use the concept of continuum mechanics.

Generally this is still vallid down to the scale of a few Angstroms.

This allows us to define a “fluid particle”, which is neither too small (not an atom, e.g.)

nor too big (small compared to the size of the box we are in). This useful concept will allow

us to move forward.

Two things happen on the micro-scale:

• Viscosity becomes dominant compared with inertial effects

• The surface to volume ratio increases, meaning that surface effects dominate volume

effects.

2 The Navier-Stokes and the Stokes equations

The motion of a fluid particle is described by a velocity field �u. The velocity of the particle

can change in two ways:

Material derivative:
D�u

Dt
=

∂�u

∂t
+ �u ·∇�u (1)

A force balance on this particle leads to the Navier-Stokes Equation:

ρ

�
∂�u

∂t
+ �u · �∇�u

�
= −�∇p+ µ�∇2�u+ �F (2)

Here we are assuming a Newtonian (viscosity is independent of shear rate) and incom-

pressible (ρ is constant) fluid. The term �F indicates a body force, i.e. a force acting on the

volume of the fluid, not on the boundaries.

We can non-dimensionalize this equation by taking a characteristic value for velocity (U),

for space (L), and taking the material properties of the fluid µ and ρ.
This leads to the definition of Re:

Re =
ρUL

µ
(3)

which is a dimensionless number. This allows us to re-write the NS equation as:
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Interpretation of the Reynolds number II

• Viscous diffusion time

• This yields:

p

σ
∼ ρU2

µU/L
∼ ρUL

µ
= Re (14)

The ratio of two times:

• Advection time:

τadv ∼ L

U
(15)

• Viscous diffusion time:

τdiff ∼ L2ρ

µ
=

L2

ν
(16)

• The ratio yields:

τdiff
τadv

∼ L2

ν
· U
L

∼ UL

ν
= Re (17)

The first interpretation allows us to ignore inertial effects, while the second interpretation

allows us to ignore temporal adjustements.

3 Two basic flows

3.1 Couette flow

For Couette flow, there is no net pressure drop along the channel. However, one of the

boundaries is moving. This yields the equation:

µ
∂2u

∂y2
= 0 (18)

withe boundary conditions:

u(y = 0) = 0 u(y = h) = uH (19)

The solution is that

u = uH
�y
h

�
(20)

The stress that is applied by this flow on the bottom wall is:

τxy(y = 0) = µ
∂u

∂y
= µ

uH
h

(21)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.

• This yields:

p

σ
∼ ρU2

µU/L
∼ ρUL

µ
= Re (14)

The ratio of two times:

• Advection time:

τadv ∼ L

U
(15)

• Viscous diffusion time:

τdiff ∼ L2ρ

µ
=

L2

ν
(16)

where ν has units;

[ν] =
L

T 2
(17)

• The ratio yields:

τdiff
τadv

∼ L2

ν
· U
L

∼ UL

ν
= Re (18)

The first interpretation allows us to ignore inertial effects, while the second interpretation

allows us to ignore temporal adjustements.

3 Two basic flows

3.1 Couette flow

For Couette flow, there is no net pressure drop along the channel. However, one of the

boundaries is moving. This yields the equation:

µ
∂2u

∂y2
= 0 (19)

withe boundary conditions:

u(y = 0) = 0 u(y = h) = uH (20)

The solution is that

u = uH
�y
h

�
(21)

The stress that is applied by this flow on the bottom wall is:

τxy(y = 0) = µ
∂u

∂y
= µ

uH
h

(22)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.

Change in boundary velocity transmitted 
via a diffusive process

Boundary moving below a high-
viscosity oil

Kinematic viscosity
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Interpretation of the Reynolds number II

• Advection time

• Viscous diffusion time

• This yields:

p

σ
∼ ρU2

µU/L
∼ ρUL

µ
= Re (14)

The ratio of two times:

• Advection time:

τadv ∼ L

U
(15)

• Viscous diffusion time:

τdiff ∼ L2ρ

µ
=

L2

ν
(16)

• The ratio yields:

τdiff
τadv

∼ L2

ν
· U
L

∼ UL

ν
= Re (17)

The first interpretation allows us to ignore inertial effects, while the second interpretation

allows us to ignore temporal adjustements.

3 Two basic flows

3.1 Couette flow

For Couette flow, there is no net pressure drop along the channel. However, one of the

boundaries is moving. This yields the equation:

µ
∂2u

∂y2
= 0 (18)

withe boundary conditions:

u(y = 0) = 0 u(y = h) = uH (19)

The solution is that

u = uH
�y
h

�
(20)

The stress that is applied by this flow on the bottom wall is:

τxy(y = 0) = µ
∂u

∂y
= µ

uH
h

(21)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.

• This yields:

p

σ
∼ ρU2

µU/L
∼ ρUL

µ
= Re (14)

The ratio of two times:

• Advection time:

τadv ∼ L

U
(15)

• Viscous diffusion time:

τdiff ∼ L2ρ

µ
=

L2

ν
(16)

• The ratio yields:

τdiff
τadv

∼ L2

ν
· U
L

∼ UL

ν
= Re (17)

The first interpretation allows us to ignore inertial effects, while the second interpretation

allows us to ignore temporal adjustements.

3 Two basic flows

3.1 Couette flow

For Couette flow, there is no net pressure drop along the channel. However, one of the

boundaries is moving. This yields the equation:

µ
∂2u

∂y2
= 0 (18)

withe boundary conditions:

u(y = 0) = 0 u(y = h) = uH (19)

The solution is that

u = uH
�y
h

�
(20)

The stress that is applied by this flow on the bottom wall is:

τxy(y = 0) = µ
∂u

∂y
= µ

uH
h

(21)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.

• This yields:

p

σ
∼ ρU2

µU/L
∼ ρUL

µ
= Re (14)

The ratio of two times:

• Advection time:

τadv ∼ L

U
(15)

• Viscous diffusion time:

τdiff ∼ L2ρ

µ
=

L2

ν
(16)

• The ratio yields:

τdiff
τadv

∼ L2

ν
· U
L

∼ UL

ν
= Re (17)

The first interpretation allows us to ignore inertial effects, while the second interpretation

allows us to ignore temporal adjustements.

3 Two basic flows

3.1 Couette flow

For Couette flow, there is no net pressure drop along the channel. However, one of the

boundaries is moving. This yields the equation:

µ
∂2u

∂y2
= 0 (18)

withe boundary conditions:

u(y = 0) = 0 u(y = h) = uH (19)

The solution is that

u = uH
�y
h

�
(20)

The stress that is applied by this flow on the bottom wall is:

τxy(y = 0) = µ
∂u

∂y
= µ

uH
h

(21)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.

• This yields:

p

σ
∼ ρU2

µU/L
∼ ρUL

µ
= Re (14)

The ratio of two times:

• Advection time:

τadv ∼ L

U
(15)

• Viscous diffusion time:

τdiff ∼ L2ρ

µ
=

L2

ν
(16)

where ν has units;

[ν] =
L

T 2
(17)

• The ratio yields:

τdiff
τadv

∼ L2

ν
· U
L

∼ UL

ν
= Re (18)

The first interpretation allows us to ignore inertial effects, while the second interpretation

allows us to ignore temporal adjustements.

3 Two basic flows

3.1 Couette flow

For Couette flow, there is no net pressure drop along the channel. However, one of the

boundaries is moving. This yields the equation:

µ
∂2u

∂y2
= 0 (19)

withe boundary conditions:

u(y = 0) = 0 u(y = h) = uH (20)

The solution is that

u = uH
�y
h

�
(21)

The stress that is applied by this flow on the bottom wall is:

τxy(y = 0) = µ
∂u

∂y
= µ

uH
h

(22)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.
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• This yields:

p

σ
∼ ρU2

µU/L
∼ ρUL

µ
= Re (14)

The ratio of two times:

• Advection time:

τadv ∼ L

U
(15)

• Viscous diffusion time:

τdiff ∼ L2ρ

µ
=

L2

ν
(16)

• The ratio yields:

τdiff
τadv

∼ L2

ν
· U
L

∼ UL

ν
= Re (17)

The first interpretation allows us to ignore inertial effects, while the second interpretation

allows us to ignore temporal adjustements.

3 Two basic flows

3.1 Couette flow

For Couette flow, there is no net pressure drop along the channel. However, one of the

boundaries is moving. This yields the equation:

µ
∂2u

∂y2
= 0 (18)

withe boundary conditions:

u(y = 0) = 0 u(y = h) = uH (19)

The solution is that

u = uH
�y
h

�
(20)

The stress that is applied by this flow on the bottom wall is:

τxy(y = 0) = µ
∂u

∂y
= µ

uH
h

(21)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.

Back to N-S. to Stokes equation

Micro-scale flows outline

Charles Baroud

13 april 2011

1 General introduction

As the scale of the problem that we are treating decreases, it is reasonable to ask whether we

can still talk about a fluid or if we need to start discussing discrete molecules.

At scales relevant to “micro-flows”, we can still use the concept of continuum mechanics.

Generally this is still vallid down to the scale of a few Angstroms.

This allows us to define a “fluid particle”, which is neither too small (not an atom, e.g.)

nor too big (small compared to the size of the box we are in). This useful concept will allow

us to move forward.

Two things happen on the micro-scale:

• Viscosity becomes dominant compared with inertial effects

• The surface to volume ratio increases, meaning that surface effects dominate volume

effects.

2 The Navier-Stokes and the Stokes equations

The motion of a fluid particle is described by a velocity field �u. The velocity of the particle

can change in two ways:

Material derivative:
D�u

Dt
=

∂�u

∂t
+ �u ·∇�u (1)

A force balance on this particle leads to the Navier-Stokes Equation:

ρ

�
∂�u

∂t
+ �u · �∇�u

�
= −�∇p+ µ�∇2�u+ �F (2)

Here we are assuming a Newtonian (viscosity is independent of shear rate) and incom-

pressible (ρ is constant) fluid. The term �F indicates a body force, i.e. a force acting on the

volume of the fluid, not on the boundaries.

We can non-dimensionalize this equation by taking a characteristic value for velocity (U),

for space (L), and taking the material properties of the fluid µ and ρ.
This leads to the definition of Re:

Re =
ρUL

µ
(3)

which is a dimensionless number. This allows us to re-write the NS equation as:

1

Negligible if << 1

Negligible if 

• This yields:

p

σ
∼ ρU2

µU/L
∼ ρUL

µ
= Re (14)

The ratio of two times:

• Advection time:

τadv ∼ L

U
(15)

• Viscous diffusion time:

τdiff ∼ L2ρ

µ
=

L2

ν
(16)

• The ratio yields:

τdiff
τadv

∼ L2

ν
· U
L

∼ UL

ν
= Re (17)

The first interpretation allows us to ignore inertial effects, while the second interpretation

allows us to ignore temporal adjustements.

3 Two basic flows

3.1 Couette flow

For Couette flow, there is no net pressure drop along the channel. However, one of the

boundaries is moving. This yields the equation:

µ
∂2u

∂y2
= 0 (18)

withe boundary conditions:

u(y = 0) = 0 u(y = h) = uH (19)

The solution is that

u = uH
�y
h

�
(20)

The stress that is applied by this flow on the bottom wall is:

τxy(y = 0) = µ
∂u

∂y
= µ

uH
h

(21)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.

<< 1
(fluid adjusts immediately to variations in BC)

(Viscous dominate over inertial stresses)
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Two basic flows

• Boundary driven flow in a gap 
(Couette flow) 

• Pressure driven flow in a tube
(Poiseuille flow)
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Couette flow

• This yields:

p

σ
∼ ρU2

µU/L
∼ ρUL

µ
= Re (14)

The ratio of two times:

• Advection time:

τadv ∼ L

U
(15)

• Viscous diffusion time:

τdiff ∼ L2ρ

µ
=

L2

ν
(16)

where ν has units;

[ν] =
L

T 2
(17)

• The ratio yields:

τdiff
τadv

∼ L2

ν
· U
L

∼ UL

ν
= Re (18)

The first interpretation allows us to ignore inertial effects, while the second interpretation

allows us to ignore temporal adjustements.

3 Two basic flows

3.1 Couette flow

For Couette flow, there is no net pressure drop along the channel. However, one of the

boundaries is moving. This yields the equation:

µ
∂2u

∂y2
= 0 (19)

withe boundary conditions:

u(y = 0) = 0 u(y = h) = uH (20)

The solution is that

u = uH
�y
h

�
(21)

The stress that is applied by this flow on the bottom wall is:

τxy(y = 0) = µ
∂u

∂y
= µ

uH
h

(22)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.

No pressure term. 
Stokes equation:

• This yields:

p

σ
∼ ρU2

µU/L
∼ ρUL

µ
= Re (14)

The ratio of two times:

• Advection time:

τadv ∼ L

U
(15)

• Viscous diffusion time:

τdiff ∼ L2ρ

µ
=

L2

ν
(16)

where ν has units;

[ν] =
L

T 2
(17)

• The ratio yields:

τdiff
τadv

∼ L2

ν
· U
L

∼ UL

ν
= Re (18)

The first interpretation allows us to ignore inertial effects, while the second interpretation

allows us to ignore temporal adjustements.

3 Two basic flows

3.1 Couette flow

For Couette flow, there is no net pressure drop along the channel. However, one of the

boundaries is moving. This yields the equation:

µ
∂2u

∂y2
= 0 (19)

withe boundary conditions:

u(y = 0) = 0 u(y = h) = uH (20)

The solution is that

u = uH
�y
h

�
(21)

The stress that is applied by this flow on the bottom wall is:

τxy(y = 0) = µ
∂u

∂y
= µ

uH
h

(22)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.

• This yields:

p

σ
∼ ρU2

µU/L
∼ ρUL

µ
= Re (14)

The ratio of two times:

• Advection time:

τadv ∼ L

U
(15)

• Viscous diffusion time:

τdiff ∼ L2ρ

µ
=

L2

ν
(16)

where ν has units;

[ν] =
L

T 2
(17)

• The ratio yields:

τdiff
τadv

∼ L2

ν
· U
L

∼ UL

ν
= Re (18)

The first interpretation allows us to ignore inertial effects, while the second interpretation

allows us to ignore temporal adjustements.

3 Two basic flows

3.1 Couette flow

For Couette flow, there is no net pressure drop along the channel. However, one of the

boundaries is moving. This yields the equation:

µ
∂2u

∂y2
= 0 (19)

withe boundary conditions:

u(y = 0) = 0 u(y = h) = uH (20)

The solution is that

u = uH
�y
h

�
(21)

The stress that is applied by this flow on the bottom wall is:

τxy(y = 0) = µ
∂u

∂y
= µ

uH
h

(22)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.

h

H

τxy = µ
∂u

∂y
= µ

uH
h

(22)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.
In dimensional terms:

F = A · τxy ∼ µ
uH
h

· h2 ∼ µuHh (23)

Force acting on a sphere in Stokes flow: A sphere that is settling in a viscous flow
would feel a drag force due to the shear stress on its surface. If the sphere is settling by its
own weight

Fg = (ρs − ρl)g
4

3
πR3 (24)

and the drag force is due to purely viscous effects

Fd = 6πµRU (25)

Equating the two yields a settling velocity:

U =
2

9

g∆ρ

µ
R2 (26)

In the case of a liquid drop, replace 6π by 4π in Fd.
The time required to reach the final velocity is given by the viscous diffusion time, or

τdiff = R2/ν.

3.2 Poiseuille flow

Now consider the flow in a circular pipe, driven by a pressure difference between the upstream
and downstream ends. We will assume that p(z) varies linearly so that

∇p =
∂p

∂z
= cst (27)

with the boundary conditions that u(r = R) = 0 at the walls.
This can be solved to yield:

uz =
−1

4µ

∂p

∂z
(R2 − r2) (28)

We can integrate this to yield the volumetric flow rate Q

Q = −πR4

8µ

∂p

∂z
(29)

Microchannels are often not circular but rectangular instead. The Poiseuille-like solution
exists for these flows but is more complicated.

Shear stress on the wall:

τxy = µ
∂u

∂y
= µ

uH
h

(22)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.
In dimensional terms:

F = A · τxy ∼ µ
uH
h

· h2 ∼ µuHh (23)

Force acting on a sphere in Stokes flow: A sphere that is settling in a viscous flow
would feel a drag force due to the shear stress on its surface. If the sphere is settling by its
own weight

Fg = (ρs − ρl)g
4

3
πR3 (24)

and the drag force is due to purely viscous effects

Fd = 6πµRU (25)

Equating the two yields a settling velocity:

U =
2

9

g∆ρ

µ
R2 (26)

In the case of a liquid drop, replace 6π by 4π in Fd.
The time required to reach the final velocity is given by the viscous diffusion time, or

τdiff = R2/ν.

3.2 Poiseuille flow

Now consider the flow in a circular pipe, driven by a pressure difference between the upstream
and downstream ends. We will assume that p(z) varies linearly so that

∇p =
∂p

∂z
= cst (27)

with the boundary conditions that u(r = R) = 0 at the walls.
This can be solved to yield:

uz =
−1

4µ

∂p

∂z
(R2 − r2) (28)

We can integrate this to yield the volumetric flow rate Q

Q = −πR4

8µ

∂p

∂z
(29)

Microchannels are often not circular but rectangular instead. The Poiseuille-like solution
exists for these flows but is more complicated.

For a plate of area A
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Force on a falling sphere
τxy = µ

∂u

∂y
= µ

uH
h

(22)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.
In dimensional terms:

F = A · τxy ∼ µ
uH
h

· h2 ∼ µuHh (23)

Force acting on a sphere in Stokes flow: A sphere that is settling in a viscous flow
would feel a drag force due to the shear stress on its surface. If the sphere is settling by its
own weight

Fg = (ρs − ρl)g
4

3
πR3 (24)

and the drag force is due to purely viscous effects

Fd = 6πµRU (25)

Equating the two yields a settling velocity:

U =
2

9

g∆ρ

µ
R2 (26)

In the case of a liquid drop, replace 6π by 4π in Fd.
The time required to reach the final velocity is given by the viscous diffusion time, or

τdiff = R2/ν.

3.2 Poiseuille flow

Now consider the flow in a circular pipe, driven by a pressure difference between the upstream
and downstream ends. We will assume that p(z) varies linearly so that

∇p =
∂p

∂z
= cst (27)

with the boundary conditions that u(r = R) = 0 at the walls.
This can be solved to yield:

uz =
−1

4µ

∂p

∂z
(R2 − r2) (28)

We can integrate this to yield the volumetric flow rate Q

Q = −πR4

8µ

∂p

∂z
(29)

Microchannels are often not circular but rectangular instead. The Poiseuille-like solution
exists for these flows but is more complicated.

τxy = µ
∂u

∂y
= µ

uH
h

(22)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.
In dimensional terms:

F = A · τxy ∼ µ
uH
h

· h2 ∼ µuHh (23)

Force acting on a sphere in Stokes flow: A sphere that is settling in a viscous flow
would feel a drag force due to the shear stress on its surface. If the sphere is settling by its
own weight

Fg = (ρs − ρl)g
4

3
πR3 (24)

and the drag force is due to purely viscous effects

Fd = 6πµRU (25)

Equating the two yields a settling velocity:

U =
2

9

g∆ρ

µ
R2 (26)

In the case of a liquid drop, replace 6π by 4π in Fd.
The time required to reach the final velocity is given by the viscous diffusion time, or

τdiff = R2/ν.

3.2 Poiseuille flow

Now consider the flow in a circular pipe, driven by a pressure difference between the upstream
and downstream ends. We will assume that p(z) varies linearly so that

∇p =
∂p

∂z
= cst (27)

with the boundary conditions that u(r = R) = 0 at the walls.
This can be solved to yield:

uz =
−1

4µ

∂p

∂z
(R2 − r2) (28)

We can integrate this to yield the volumetric flow rate Q

Q = −πR4

8µ

∂p

∂z
(29)

Microchannels are often not circular but rectangular instead. The Poiseuille-like solution
exists for these flows but is more complicated.

τxy = µ
∂u

∂y
= µ

uH
h

(22)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.
In dimensional terms:

F = A · τxy ∼ µ
uH
h

· h2 ∼ µuHh (23)

Force acting on a sphere in Stokes flow: A sphere that is settling in a viscous flow
would feel a drag force due to the shear stress on its surface. If the sphere is settling by its
own weight

Fg = (ρs − ρl)g
4

3
πR3 (24)

and the drag force is due to purely viscous effects

Fd = 6πµRU (25)

Equating the two yields a settling velocity:

U =
2

9

g∆ρ

µ
R2 (26)

In the case of a liquid drop, replace 6π by 4π in Fd.
The time required to reach the final velocity is given by the viscous diffusion time, or

τdiff = R2/ν.

3.2 Poiseuille flow

Now consider the flow in a circular pipe, driven by a pressure difference between the upstream
and downstream ends. We will assume that p(z) varies linearly so that

∇p =
∂p

∂z
= cst (27)

with the boundary conditions that u(r = R) = 0 at the walls.
This can be solved to yield:

uz =
−1

4µ

∂p

∂z
(R2 − r2) (28)

We can integrate this to yield the volumetric flow rate Q

Q = −πR4

8µ

∂p

∂z
(29)

Microchannels are often not circular but rectangular instead. The Poiseuille-like solution
exists for these flows but is more complicated.

Settling velocity
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Verify drag force scaling

Left sphere twice as big as right sphere
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Poiseuille flow

τxy = µ
∂u

∂y
= µ

uH
h

(22)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.
In dimensional terms:

F = A · τxy ∼ µ
uH
h

· h2 ∼ µuHh (23)

Force acting on a sphere in Stokes flow: A sphere that is settling in a viscous flow
would feel a drag force due to the shear stress on its surface. If the sphere is settling by its
own weight

Fg = (ρs − ρl)g
4

3
πR3 (24)

and the drag force is due to purely viscous effects

Fd = 6πµRU (25)

Equating the two yields a settling velocity:

U =
2

9

g∆ρ

µ
R2 (26)

In the case of a liquid drop, replace 6π by 4π in Fd.
The time required to reach the final velocity is given by the viscous diffusion time, or

τdiff = R2/ν.

3.2 Poiseuille flow

Now consider the flow in a circular pipe, driven by a pressure difference between the upstream
and downstream ends. We will assume that p(z) varies linearly so that

∇p =
∂p

∂z
= cst (27)

with the boundary conditions that u(r = R) = 0 at the walls.
This can be solved to yield:

uz =
−1

4µ

∂p

∂z
(R2 − r2) (28)

We can integrate this to yield the volumetric flow rate Q

Q = −πR4

8µ

∂p

∂z
(29)

Microchannels are often not circular but rectangular instead. The Poiseuille-like solution
exists for these flows but is more complicated.

Assume constant pressure gradient

Velocity inside cylindrical tube of radius R

τxy = µ
∂u

∂y
= µ

uH
h

(22)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.
In dimensional terms:

F = A · τxy ∼ µ
uH
h

· h2 ∼ µuHh (23)

Force acting on a sphere in Stokes flow: A sphere that is settling in a viscous flow
would feel a drag force due to the shear stress on its surface. If the sphere is settling by its
own weight

Fg = (ρs − ρl)g
4

3
πR3 (24)

and the drag force is due to purely viscous effects

Fd = 6πµRU (25)

Equating the two yields a settling velocity:

U =
2

9

g∆ρ

µ
R2 (26)

In the case of a liquid drop, replace 6π by 4π in Fd.
The time required to reach the final velocity is given by the viscous diffusion time, or

τdiff = R2/ν.

3.2 Poiseuille flow

Now consider the flow in a circular pipe, driven by a pressure difference between the upstream
and downstream ends. We will assume that p(z) varies linearly so that

∇p =
∂p

∂z
= cst (27)

with the boundary conditions that u(r = R) = 0 at the walls.
This can be solved to yield:

uz =
−1

4µ

∂p

∂z
(R2 − r2) (28)

We can integrate this to yield the volumetric flow rate Q

Q = −πR4

8µ

∂p

∂z
(29)

Microchannels are often not circular but rectangular instead. The Poiseuille-like solution
exists for these flows but is more complicated.

2R

z
r

τxy = µ
∂u

∂y
= µ

uH
h

(22)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.
In dimensional terms:

F = A · τxy ∼ µ
uH
h

· h2 ∼ µuHh (23)

Force acting on a sphere in Stokes flow: A sphere that is settling in a viscous flow
would feel a drag force due to the shear stress on its surface. If the sphere is settling by its
own weight

Fg = (ρs − ρl)g
4

3
πR3 (24)

and the drag force is due to purely viscous effects

Fd = 6πµRU (25)

Equating the two yields a settling velocity:

U =
2

9

g∆ρ

µ
R2 (26)

In the case of a liquid drop, replace 6π by 4π in Fd.
The time required to reach the final velocity is given by the viscous diffusion time, or

τdiff = R2/ν.

3.2 Poiseuille flow

Now consider the flow in a circular pipe, driven by a pressure difference between the upstream
and downstream ends. We will assume that p(z) varies linearly so that

∇p =
∂p

∂z
= cst (27)

with the boundary conditions that u(r = R) = 0 at the walls.
This can be solved to yield:

uz =
−1

4µ

∂p

∂z
(R2 − r2) (28)

We can integrate this to yield the volumetric flow rate Q

Q = −πR4

8µ

∂p

∂z
(29)

Microchannels are often not circular but rectangular instead. The Poiseuille-like solution
exists for these flows but is more complicated.

Flow rate:
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Tube of length l

Pe, relating convection to diffusion; the capillary num-
ber Ca, relating viscous forces to surface tension; the
Deborah, Weissenberg, and elasticity numbers De, Wi,
and El, expressing elastic effects; the Grashof and Ray-
leigh numbers Gr and Ra, relating transport mecha-
nisms in buoyancy-driven flows; and the Knudsen num-
ber Kn, relating microscopic to macroscopic length
scales. Throughout this review, we will make reference
to the standard microchannels shown in Fig. 2.

Before beginning, however, we very briefly review ba-
sic fluid properties and the dimensional parameters that
characterize them. Fluids are continuum materials, and
so discrete quantities like mass and force give way to
continuous fields like density ! and force density f that
are defined per unit volume. The concept of a small fluid
element is often invoked by analogy with discrete me-
chanics. Forces on such elements arise from fluid
stresses !J !forces per unit area" exerted on the element
surfaces, in addition to externally applied body forces f
exerted on the bulk of the element.

The velocity field for a Newtonian fluid obeys the
Navier-Stokes equations, which essentially represent the

continuum version of F=ma on a per unit volume basis:

!# !u
!t

+ u ·"u$ = " ·!J + f = − "p + ""2u + f , !1"

where inertial acceleration terms appear on the left and
forces on the right. Here f represents body force densi-
ties, which will include many of the effects discussed in
this review. When inertial forces are small compared to
viscous forces, which is usually the case in microfluidic
devices, the nonlinear term can be neglected, leaving the
Stokes equation

!
!u
!t

= " ·! + f = − "p + ""2u + f . !2"

In both cases, mass conservation requires

!!

!t
+ " ·!!u" = 0, !3"

giving the incompressibility condition "·u=0 for slowly
flowing fluids with nearly constant density like water.

Physically, the tensor stress !J consists of normal and
tangential components. Pressure, which is an isotropic
force per unit area pn̂ exerted normal to any surface, is
the most familiar normal stress. Viscous stresses !Jv
%""u contain both normal and shear components. Ad-
ditional stresses, both normal and shear, arise in com-
plex fluids with deformable microstructure: polymer so-
lutions, discussed in Sec. II.D, provide one example.
Interfacial !capillary" stresses #c%$ /R, where $ is sur-
face tension and R is surface curvature, are exerted nor-
mal to free fluid surfaces, whereas surface tension gradi-
ents give Marangoni stresses #m%"$ that are exerted
along the surface.

TABLE I. Dimensionless numbers used in this review.

Re Reynolds !U0L0

"

inertial/viscous Eq. !5"

Pe Péclet U0L0

D
convection/diffusion Eq. !7"

Ca capillary "U0

$

viscous/interfacial Eq. !19"

Wi Weissenberg %p$̇ polymer relaxation time/shear rate time Eq. !24"

De Deborah %p

%flow

polymer relaxation time/flow time Eq. !25"

El elasticity %p"

!h2
elastic effects/ inertial effects Eq. !26"

Gr Grashof !UbL0

"

Re for buoyant flow Eq. !30"

Ra Rayleigh UbL0

D
Pe for buoyant flow Eq. !29"

Kn Knudsen &

L0

slip length/macroscopic length Eqs. !36" and !38"

FIG. 2. !Color in online edition" Model !a" rectangular and !b"
circular microchannels, through which fluid flows with charac-
teristic velocity scale U0. Channel length will be denoted l,
width !or radius" w, and height !shortest dimension" h. The
coordinate z points downstream, y spans the width, and x
spans the height.
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4 Hydraulic circuit analysis

If p is indeed linearly varying in z, Eq. 29 can be re-written as

Q =
πR4

8µL
∆p =

∆p

R (30)

where R is a resistance in the same way as electrical circuit resistances:

R =
8µL

πR4
(31)

The analogy with electrical circuits goes beyond simple resistance. We can make the
following analogies:

Electrical Fluidic
Voltage drop (∆V ) Pressure drop (∆p)
Current (I) Flow rate (Q)
Resistance Fluidic resistance (R)
Capacitance (C) Mechanical compliance
Inductance (L) Inertia

4 Hydraulic circuit analysis

If p is indeed linearly varying in z, Eq. 29 can be re-written as

Q =
πR4

8µL
∆p =

∆p

R (30)

where R is a resistance in the same way as electrical circuit resistances:

R =
8µL

πR4
(31)

The analogy with electrical circuits goes beyond simple resistance. We can make the
following analogies:

Electrical Fluidic
Voltage drop (∆V ) Pressure drop (∆p)
Current (I) Flow rate (Q)
Resistance Fluidic resistance (R)
Capacitance (C) Mechanical compliance
Inductance (L) Inertia

Hydrodynamic resistance You don’t need to solve 
the fluids equations to 

know the flow rate
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Microchannel

Pe, relating convection to diffusion; the capillary num-
ber Ca, relating viscous forces to surface tension; the
Deborah, Weissenberg, and elasticity numbers De, Wi,
and El, expressing elastic effects; the Grashof and Ray-
leigh numbers Gr and Ra, relating transport mecha-
nisms in buoyancy-driven flows; and the Knudsen num-
ber Kn, relating microscopic to macroscopic length
scales. Throughout this review, we will make reference
to the standard microchannels shown in Fig. 2.

Before beginning, however, we very briefly review ba-
sic fluid properties and the dimensional parameters that
characterize them. Fluids are continuum materials, and
so discrete quantities like mass and force give way to
continuous fields like density ! and force density f that
are defined per unit volume. The concept of a small fluid
element is often invoked by analogy with discrete me-
chanics. Forces on such elements arise from fluid
stresses !J !forces per unit area" exerted on the element
surfaces, in addition to externally applied body forces f
exerted on the bulk of the element.

The velocity field for a Newtonian fluid obeys the
Navier-Stokes equations, which essentially represent the

continuum version of F=ma on a per unit volume basis:

!# !u
!t

+ u ·"u$ = " ·!J + f = − "p + ""2u + f , !1"

where inertial acceleration terms appear on the left and
forces on the right. Here f represents body force densi-
ties, which will include many of the effects discussed in
this review. When inertial forces are small compared to
viscous forces, which is usually the case in microfluidic
devices, the nonlinear term can be neglected, leaving the
Stokes equation

!
!u
!t

= " ·! + f = − "p + ""2u + f . !2"

In both cases, mass conservation requires

!!

!t
+ " ·!!u" = 0, !3"

giving the incompressibility condition "·u=0 for slowly
flowing fluids with nearly constant density like water.

Physically, the tensor stress !J consists of normal and
tangential components. Pressure, which is an isotropic
force per unit area pn̂ exerted normal to any surface, is
the most familiar normal stress. Viscous stresses !Jv
%""u contain both normal and shear components. Ad-
ditional stresses, both normal and shear, arise in com-
plex fluids with deformable microstructure: polymer so-
lutions, discussed in Sec. II.D, provide one example.
Interfacial !capillary" stresses #c%$ /R, where $ is sur-
face tension and R is surface curvature, are exerted nor-
mal to free fluid surfaces, whereas surface tension gradi-
ents give Marangoni stresses #m%"$ that are exerted
along the surface.

TABLE I. Dimensionless numbers used in this review.

Re Reynolds !U0L0

"

inertial/viscous Eq. !5"

Pe Péclet U0L0

D
convection/diffusion Eq. !7"

Ca capillary "U0

$

viscous/interfacial Eq. !19"

Wi Weissenberg %p$̇ polymer relaxation time/shear rate time Eq. !24"

De Deborah %p

%flow

polymer relaxation time/flow time Eq. !25"

El elasticity %p"

!h2
elastic effects/ inertial effects Eq. !26"

Gr Grashof !UbL0

"

Re for buoyant flow Eq. !30"

Ra Rayleigh UbL0

D
Pe for buoyant flow Eq. !29"

Kn Knudsen &

L0

slip length/macroscopic length Eqs. !36" and !38"

FIG. 2. !Color in online edition" Model !a" rectangular and !b"
circular microchannels, through which fluid flows with charac-
teristic velocity scale U0. Channel length will be denoted l,
width !or radius" w, and height !shortest dimension" h. The
coordinate z points downstream, y spans the width, and x
spans the height.

980 T. M. Squires and S. R. Quake: Microfluidics: Fluid physics at the nanoliter scale
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Hydrodynamic resistance

4 Hydraulic circuit analysis

If p is indeed linearly varying in z, Eq. 29 can be re-written as

Q =
πR4

8µL
∆p =

∆p

R (30)

where R is a resistance in the same way as electrical circuit resistances:

R =
8µL

πR4
(31)

The analogy with electrical circuits goes beyond simple resistance. We can make the

following analogies:

Electrical Fluidic
Voltage drop (∆V ) Pressure drop (∆p)
Current (I) Flow rate (Q)

Resistance Fluidic resistance (R)

Capacitance (C) Mechanical compliance (K)

Inductance (L) Inertia

In the case of a rectangular channel, the Poiseuille solution is not exact. The exact solution

exists but an analytical form can only be written in terms of an infinite Fourier series.

However, the hydrodynamic resistance can be written for a rectangular channel. An

approximate form of the flowrate - Pressure relation is:

Q � wh3

12µL

�
1− 6

�
2

π

�5 h

w

�
∆p (32)

Fluidic capacitance:

The capacitance associated with an air bubble can be written as [1]:

Ch =
p0V0

p2
(33)
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4 Hydraulic circuit analysis

If p is indeed linearly varying in z, Eq. 29 can be re-written as

Q =
πR4

8µL
∆p =

∆p

R (30)

where R is a resistance in the same way as electrical circuit resistances:

R =
8µL

πR4
(31)

In the case of a rectangular channel, the Poiseuille solution is not exact. The exact solution

exists but an analytical form can only be written in terms of an infinite Fourier series.

However, the hydrodynamic resistance can be written for a rectangular channel. An

approximate form of the flowrate - Pressure relation is:

Q � wh3

12µL

�
1− 6

�
2

π

�5 h

w

�
∆p (32)

so

R =
12µL

wh3

�
1− 6

�
2

π

�5 h

w

�−1

(33)

The analogy with electrical circuits goes beyond simple resistance. We can make the

following analogies:

Electrical Fluidic
Voltage drop (∆V ) Pressure drop (∆p)
Current (I) Flow rate (Q)

Resistance Fluidic resistance (R)

Capacitance (C) Mechanical compliance (K)

Inductance (L) Inertia

Fluidic capacitance:

The capacitance associated with an air bubble can be written as [1]:

Ch =
p0V0

p2
(34)
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If h<<w

4 Hydraulic circuit analysis

If p is indeed linearly varying in z, Eq. 29 can be re-written as

Q =
πR4

8µL
∆p =

∆p

R (30)

where R is a resistance in the same way as electrical circuit resistances:

R =
8µL

πR4
(31)

In the case of a rectangular channel, the Poiseuille solution is not exact. The exact solution

exists but an analytical form can only be written in terms of an infinite Fourier series.

However, the hydrodynamic resistance can be written for a rectangular channel. An

approximate form of the flowrate - Pressure relation is:

Q � wh3

12µL

�
1− 6

�
2

π

�5 h

w

�
∆p (32)

so

R =
12µL

wh3

�
1− 6

�
2

π

�5 h

w

�−1

(33)

The analogy with electrical circuits goes beyond simple resistance. We can make the

following analogies:

Electrical Fluidic
Voltage drop (∆V ) Pressure drop (∆p)
Current (I) Flow rate (Q)

Resistance Fluidic resistance (R)

Capacitance (C) Mechanical compliance (K)

Inductance (L) Inertia

Fluidic capacitance:

The capacitance associated with an air bubble can be written as [1]:

Ch =
p0V0

p2
(34)
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[1] B. J. Kirby. Micro- and Nanoscale Fluid Mechanics. Cambridge University Press, 2010.
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Analogy with electrical circuits

Pe, relating convection to diffusion; the capillary num-
ber Ca, relating viscous forces to surface tension; the
Deborah, Weissenberg, and elasticity numbers De, Wi,
and El, expressing elastic effects; the Grashof and Ray-
leigh numbers Gr and Ra, relating transport mecha-
nisms in buoyancy-driven flows; and the Knudsen num-
ber Kn, relating microscopic to macroscopic length
scales. Throughout this review, we will make reference
to the standard microchannels shown in Fig. 2.

Before beginning, however, we very briefly review ba-
sic fluid properties and the dimensional parameters that
characterize them. Fluids are continuum materials, and
so discrete quantities like mass and force give way to
continuous fields like density ! and force density f that
are defined per unit volume. The concept of a small fluid
element is often invoked by analogy with discrete me-
chanics. Forces on such elements arise from fluid
stresses !J !forces per unit area" exerted on the element
surfaces, in addition to externally applied body forces f
exerted on the bulk of the element.

The velocity field for a Newtonian fluid obeys the
Navier-Stokes equations, which essentially represent the

continuum version of F=ma on a per unit volume basis:

!# !u
!t

+ u ·"u$ = " ·!J + f = − "p + ""2u + f , !1"

where inertial acceleration terms appear on the left and
forces on the right. Here f represents body force densi-
ties, which will include many of the effects discussed in
this review. When inertial forces are small compared to
viscous forces, which is usually the case in microfluidic
devices, the nonlinear term can be neglected, leaving the
Stokes equation

!
!u
!t

= " ·! + f = − "p + ""2u + f . !2"

In both cases, mass conservation requires

!!

!t
+ " ·!!u" = 0, !3"

giving the incompressibility condition "·u=0 for slowly
flowing fluids with nearly constant density like water.

Physically, the tensor stress !J consists of normal and
tangential components. Pressure, which is an isotropic
force per unit area pn̂ exerted normal to any surface, is
the most familiar normal stress. Viscous stresses !Jv
%""u contain both normal and shear components. Ad-
ditional stresses, both normal and shear, arise in com-
plex fluids with deformable microstructure: polymer so-
lutions, discussed in Sec. II.D, provide one example.
Interfacial !capillary" stresses #c%$ /R, where $ is sur-
face tension and R is surface curvature, are exerted nor-
mal to free fluid surfaces, whereas surface tension gradi-
ents give Marangoni stresses #m%"$ that are exerted
along the surface.

TABLE I. Dimensionless numbers used in this review.

Re Reynolds !U0L0

"

inertial/viscous Eq. !5"

Pe Péclet U0L0

D
convection/diffusion Eq. !7"

Ca capillary "U0

$

viscous/interfacial Eq. !19"

Wi Weissenberg %p$̇ polymer relaxation time/shear rate time Eq. !24"

De Deborah %p

%flow

polymer relaxation time/flow time Eq. !25"

El elasticity %p"

!h2
elastic effects/ inertial effects Eq. !26"

Gr Grashof !UbL0

"

Re for buoyant flow Eq. !30"

Ra Rayleigh UbL0

D
Pe for buoyant flow Eq. !29"

Kn Knudsen &

L0

slip length/macroscopic length Eqs. !36" and !38"

FIG. 2. !Color in online edition" Model !a" rectangular and !b"
circular microchannels, through which fluid flows with charac-
teristic velocity scale U0. Channel length will be denoted l,
width !or radius" w, and height !shortest dimension" h. The
coordinate z points downstream, y spans the width, and x
spans the height.
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P

P0

4 Hydraulic circuit analysis

If p is indeed linearly varying in z, Eq. 29 can be re-written as

Q =
πR4

8µL
∆p =

∆p

R (30)

where R is a resistance in the same way as electrical circuit resistances:

R =
8µL

πR4
(31)

The analogy with electrical circuits goes beyond simple resistance. We can make the
following analogies:

Electrical Fluidic
Voltage drop (∆V ) Pressure drop (∆p)
Current (I) Flow rate (Q)
Resistance Fluidic resistance (R)
Capacitance (C) Mechanical compliance (K)
Inductance (L) Inertia
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Compliance
Compressibility is a way to store pressure:

Fluidic capacitance

C
R

4 Hydraulic circuit analysis

If p is indeed linearly varying in z, Eq. 29 can be re-written as

Q =
πR4

8µL
∆p =

∆p

R (30)

where R is a resistance in the same way as electrical circuit resistances:

R =
8µL

πR4
(31)

The analogy with electrical circuits goes beyond simple resistance. We can make the
following analogies:

Electrical Fluidic
Voltage drop (∆V ) Pressure drop (∆p)
Current (I) Flow rate (Q)
Resistance Fluidic resistance (R)
Capacitance (C) Mechanical compliance (K)
Inductance (L) Inertia

Fluidic capacitance:
The capacitance associated with an air bubble can be written as [1]:

Ch =
p0V0

p2
(32)

References

[1] B. J. Kirby. Micro- and Nanoscale Fluid Mechanics. Cambridge University Press, 2010.

Compliance associated with an air bubble:

P = RQ (35)

and also

∂P

∂t
=

1

Ch
Q (36)

This leads to the single ODE:

∂P

∂t
=

1

RCh
P (37)

which has an exponential solution:

P (t) = e−t/RCh (38)
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R-C circuit

P = RQ (35)

and also

∂P

∂t
=

1

Ch
Q (36)

This leads to the single ODE:

∂P

∂t
=

1

RCh
P (37)

which has an exponential solution:

P (t) = e−t/RCh (38)
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Hydrodynamic resistance

Compliance 

P = RQ (35)

and also

∂P

∂t
=

1

Ch
Q (36)

This leads to the single ODE:

∂P

∂t
=

1

RCh
P (37)

which has an exponential solution:

P (t) = e−t/RCh (38)
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P = RQ (35)

and also

∂P

∂t
=

1

Ch
Q (36)

This leads to the single ODE:

∂P

∂t
=

1

RCh
P (37)

which has an exponential solution:

P (t) = e−t/RCh (38)
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Therefore:

P = RQ (35)

and also

∂P

∂t
=

1

Ch
Q (36)

This leads to the single ODE:

∂P

∂t
=

1

RCh
P (37)

which has an exponential solution:

P (t) ∼ e−t/RCh (38)
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Large resistance and large compliance imply
that the system will respond very slowly
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A few words about diffusion
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A few words about diffusion

Molecular scale model:
li

A molecule performs a random walk with a certain step size 
during every time step.

Mean field model:

A chemical species is transported «down» the concentration 
gradient

P = RQ (35)

and also

∂P

∂t
=

1

Ch
Q (36)

This leads to the single ODE:

∂P

∂t
=

1

RCh
P (37)

which has an exponential solution:

P (t) ∼ e−t/RCh (38)

5 Diffusion

Diffusion can be modeled in two complementary ways: From a microscopic point of view,
one can model the motion of a single molecule as a random walk; so at each time step, the
particle can make one step left or right. The “mean field” description of diffusion is through
the concentration field, by noting that a species will be transported down its concentration
gradient. The diffusion equation for a species of concentration C is:

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
(39)

A few useful facts about diffusion:

• Diffusion quickly smoothes a rough concentration field

• A Dirac initial distribution diffuses to a Gaussian

• A top-hat distribution also diffuses to a Gaussian

• A Heaviside distribution diffuses to an error function (the integral of a Gaussian)

If we consider a channel of width w, in which a fluid flows at velocity U0, we can compare
two lengths:

1. The time to diffuse over the width of the channel is

τdiff ∼ w2

D
(40)

2. The distance travelled throughout this time is

Z ∼ U0τdiff ∼ U0
w2

D
(41)

So the ratio of Z/w gives:

Z

w
∼ U0w

D
= Pe (42)

The Peclet number is therefore a measure of the convective transport compared with the
diffusive transport. It has a very similar structure to the Reynolds number, but where ν is
replaced with D. The Reynolds number can be thought of as a Peclet number for momentum!
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Useful solutions
Diffusion quickly evens out short-wave variations

Delta-function → Gaussian

Top hat → Gaussian

Heaviside-function → error 
function

P = RQ (35)

and also

∂P

∂t
=

1

Ch
Q (36)

This leads to the single ODE:

∂P

∂t
=

1

RCh
P (37)

which has an exponential solution:

P (t) ∼ e−t/RCh (38)

5 Diffusion

Diffusion can be modeled in two complementary ways: From a microscopic point of view,
one can model the motion of a single molecule as a random walk; so at each time step, the
particle can make one step left or right. The “mean field” description of diffusion is through
the concentration field, by noting that a species will be transported down its concentration
gradient. The diffusion equation for a species of concentration C is:

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
(39)

A few useful facts about diffusion:

• Diffusion quickly smoothes a rough concentration field ∂2C
∂x2 � 1

• A Dirac initial distribution diffuses to a Gaussian

• A top-hat distribution also diffuses to a Gaussian

• A Heaviside distribution diffuses to an error function (the integral of a Gaussian)

If we consider a channel of width w, in which a fluid flows at velocity U0, we can compare
two lengths:

1. The time to diffuse over the width of the channel is

τdiff ∼ w2

D
(40)

2. The distance travelled throughout this time is

Z ∼ U0τdiff ∼ U0
w2

D
(41)

So the ratio of Z/w gives:

Z

w
∼ U0w

D
= Pe (42)

The Peclet number is therefore a measure of the convective transport compared with the
diffusive transport. It has a very similar structure to the Reynolds number, but where ν is
replaced with D. The Reynolds number can be thought of as a Peclet number for momentum!
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P = RQ (35)

and also

∂P

∂t
=

1

Ch
Q (36)

This leads to the single ODE:

∂P

∂t
=

1

RCh
P (37)

which has an exponential solution:

P (t) ∼ e−t/RCh (38)

5 Diffusion

Diffusion can be modeled in two complementary ways: From a microscopic point of view,
one can model the motion of a single molecule as a random walk; so at each time step, the
particle can make one step left or right. The “mean field” description of diffusion is through
the concentration field, by noting that a species will be transported down its concentration
gradient. The diffusion equation for a species of concentration C is:

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
(39)

A few useful facts about diffusion:

• Diffusion quickly smoothes a rough concentration field ∂2C
∂x2 � 1

• A Dirac initial distribution diffuses to a Gaussian

• A top-hat distribution also diffuses to a Gaussian

• A Heaviside distribution diffuses to an error function (the integral of a Gaussian)

Width of Gaussian or erf increases as the square root of time:

σ ∼ (Dt)1/2 (40)

If we consider a channel of width w, in which a fluid flows at velocity U0, we can compare
two lengths:

1. The time to diffuse over the width of the channel is

τdiff ∼ w2

D
(41)

2. The distance travelled throughout this time is

Z ∼ U0τdiff ∼ U0
w2

D
(42)

↔

↔

P = RQ (35)

and also

∂P

∂t
=

1

Ch
Q (36)

This leads to the single ODE:

∂P

∂t
=

1

RCh
P (37)

which has an exponential solution:

P (t) ∼ e−t/RCh (38)

5 Diffusion

Diffusion can be modeled in two complementary ways: From a microscopic point of view,
one can model the motion of a single molecule as a random walk; so at each time step, the
particle can make one step left or right. The “mean field” description of diffusion is through
the concentration field, by noting that a species will be transported down its concentration
gradient. The diffusion equation for a species of concentration C is:

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
(39)

A few useful facts about diffusion:

• Diffusion quickly smoothes a rough concentration field ∂2C
∂x2 � 1

• A Dirac initial distribution diffuses to a Gaussian

• A top-hat distribution also diffuses to a Gaussian

• A Heaviside distribution diffuses to an error function (the integral of a Gaussian)

Width of Gaussian or erf increases as the square root of time:

σ ∼ (Dt)1/2 (40)

If we consider a channel of width w, in which a fluid flows at velocity U0, we can compare
two lengths:

1. The time to diffuse over the width of the channel is

τdiff ∼ w2

D
(41)

2. The distance travelled throughout this time is

Z ∼ U0τdiff ∼ U0
w2

D
(42)
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Diffusion in a T-channel

!250 channel widths "approximately 2.5 cm and 4 min#
to completely mix.

1. Sensing, filtering, and fabricating with parallel laminar
flows

The competition between convection and diffusion,
embodied in the Péclet number, forms the basis for a
number of techniques for sensing and separating flow
ingredients. The following devices are designed to oper-
ate at intermediate Pe, where differences in solute diffu-
sion rates play the key role.

a. T sensor

One device that employs adjacent laminar streams is
the T sensor, shown in Fig. 5"a# "Kamholz et al., 1999;
Weigl and Yager, 1999#. Two fluid streams are brought to
flow alongside each other down a channel, and solute
molecules in each stream diffuse into the other, forming
an interdiffusion zone whose boundary is measured,
typically with a fluorescent marker. "Note, however, that

reactions introduce additional time scales and complex-
ity into the system.# T sensors have be used to measure
analyte concentration "Weigl and Yager, 1999# and ana-
lyte diffusivities and reaction kinetics "Kamholz et al.,
1999, 2001; Baroud et al., 2003#. Finally, competitive im-
munoassays have been performed by injecting an anti-
body solution alongside a solution of known, labeled an-
tigen. Antigen-antibody binding is evidenced by marker
accumulation in the interdiffusion zone, and an un-
marked antigen can be detected differentially, as compe-
tition for antibody binding alters the marker profile
measured downstream "Hatch et al., 2001#.

The naive picture presented above does not tell the
whole story about the T sensor, however. Ignoring the
channel top and bottom leads to the expectation that the
width of the interdiffusion zone should grow with z1/2, as
in Eq. "7#. In fact, experiment and analysis have shown
the front to behave in a more complicated fashion. Con-
focal microscopy of the three-dimensional front "Fig. 5#
determined the spreading near the top and bottom walls
to vary with z1/3 and with z1/2 near the middle "Ismagilov
et al., 2000#, which occurs because fluid near the top and
bottom moves more slowly than the middle, so that trac-
ers do not move as far downstream as they diffuse across
the streamlines. The near-wall interfacial dynamics can
thus be understood in terms of the classic Lévêque prob-
lem of diffusion in a shear flow "Lévêque, 1928; Deen,
1998; Ismagilov et al., 2000; Kamholz and Yager, 2001#.
Further analysis near the inlet reveals z1/3 spreading
near the walls and z1/2 in the channel center, which then
catches up downstream "Kamholz and Yager, 2002#.

b. Filtration without membranes

Figure 6 depicts the H filter, a simple device that fil-
ters particles by size without a membrane "Brody et al.,
1996; Brody and Yager, 1997#. As in the T sensor, two
different streams are brought together to flow alongside

FIG. 5. "Color in online edition# "a# The microfluidic T sensor
"Kamholz et al., 1999#. Different fluids are brought together at
a T junction to flow alongside each other down the channel. A
simple estimate suggests that the interdiffusion zone spreads
diffusively, with the square root of time "or downstream dis-
tance#, although "b#–"d# show this naive argument to break
down near the “floor” and “ceiling” of the channel. Confocal
microscopy reveals the three-dimensional nature of the
spreading of the interface in the T sensor "Ismagilov et al.,
2000#. "b# Fluorescent tracers mark reactions occurring in the
interdiffusion zone, here seen from above. "c#, "d# The no-slip
nature of the top and bottom walls of the channel affect the
flow profile, so that tracer molecules near the boundaries dif-
fuse and spread with z1/3, rather than z1/2. Reprinted with per-
mission from Ismagilov et al., 2000. ©2000, AIP.

TABLE III. Typical diffusivities for various tracers in water at
room temperature.

Characteristic diffusivities
Particle Typical size Diffusion constant

Solute ion 10−1 nm 2!103 "m2/s
Small protein 5 nm 40 "m2/s
Virus 100 nm 2 "m2/s
Bacterium 1 "m 0.2 "m2/s
Mammalian/human cell 10 "m 0.02 "m2/s

FIG. 6. "Color in online edition# The membraneless H filter
exploits the different rates at which tracers with different dif-
fusivities "and thus Pe# spread across a channel. The length l is
chosen so that large waste products do not have time to diffuse
across the channel, and thus remain confined to their initial
stream, whereas smaller molecules of interest diffuse across
the channel into the neighboring stream. At the outlet, the
second stream contains the more mobile species almost exclu-
sively "Brody et al., 1996; Brody and Yager, 1997#.
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U0

How far will the species diffuse?

P = RQ (35)

and also

∂P

∂t
=

1

Ch
Q (36)

This leads to the single ODE:

∂P

∂t
=

1

RCh
P (37)

which has an exponential solution:

P (t) ∼ e−t/RCh (38)

5 Diffusion

Diffusion can be modeled in two complementary ways: From a microscopic point of view,
one can model the motion of a single molecule as a random walk; so at each time step, the
particle can make one step left or right. The “mean field” description of diffusion is through
the concentration field, by noting that a species will be transported down its concentration
gradient. The diffusion equation for a species of concentration C is:

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
(39)

A few useful facts about diffusion:

• Diffusion quickly smoothes a rough concentration field ∂2C
∂x2 � 1

• A Dirac initial distribution diffuses to a Gaussian

• A top-hat distribution also diffuses to a Gaussian

• A Heaviside distribution diffuses to an error function (the integral of a Gaussian)

Width of Gaussian or erf increases as the square root of time:

σ ∼ (Dt)1/2 (40)

If we consider a channel of width w, in which a fluid flows at velocity U0, we can compare
two lengths:

1. The time to diffuse over the width of the channel is

τdiff ∼ w2

D
(41)

2. The distance travelled throughout this time is

Z ∼ U0τdiff ∼ U0
w2

D
(42)

Time to diffuse whole width

P = RQ (35)

and also

∂P

∂t
=

1

Ch
Q (36)

This leads to the single ODE:

∂P

∂t
=

1

RCh
P (37)

which has an exponential solution:

P (t) ∼ e−t/RCh (38)

5 Diffusion

Diffusion can be modeled in two complementary ways: From a microscopic point of view,
one can model the motion of a single molecule as a random walk; so at each time step, the
particle can make one step left or right. The “mean field” description of diffusion is through
the concentration field, by noting that a species will be transported down its concentration
gradient. The diffusion equation for a species of concentration C is:

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
(39)

A few useful facts about diffusion:

• Diffusion quickly smoothes a rough concentration field ∂2C
∂x2 � 1

• A Dirac initial distribution diffuses to a Gaussian

• A top-hat distribution also diffuses to a Gaussian

• A Heaviside distribution diffuses to an error function (the integral of a Gaussian)

Width of Gaussian or erf increases as the square root of time:

σ ∼ (Dt)1/2 (40)

If we consider a channel of width w, in which a fluid flows at velocity U0, we can compare
two lengths:

1. The time to diffuse over the width of the channel is

τdiff ∼ w2

D
(41)

2. The distance travelled throughout this time is

Z ∼ U0τdiff ∼ U0
w2

D
(42)

Distance travelled during this time

So the ratio of Z/w gives:

Z

w
∼ U0w

D
= Pe (43)

The Peclet number is therefore a measure of the convective transport compared with the

diffusive transport. It has a very similar structure to the Reynolds number, but where ν is

replaced with D. The Reynolds number can be thought of as a Peclet number for momentum!
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How many 
channel widths?

Peclet number as ratio
of two lengths
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Pe vs. Re

So the ratio of Z/w gives:

Z

w
∼ U0w

D
= Pe (43)

The Peclet number is therefore a measure of the convective transport compared with the

diffusive transport. It has a very similar structure to the Reynolds number, but where ν is

replaced with D. The Reynolds number can be thought of as a Peclet number for momentum!
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Reynolds number as a 
Peclet number for 

momentum transfer

• This yields:

p

σ
∼ ρU2

µU/L
∼ ρUL

µ
= Re (14)

The ratio of two times:

• Advection time:

τadv ∼ L

U
(15)

• Viscous diffusion time:

τdiff ∼ L2ρ

µ
=

L2

ν
(16)

• The ratio yields:

τdiff
τadv

∼ L2

ν
· U
L

∼ UL

ν
= Re (17)

The first interpretation allows us to ignore inertial effects, while the second interpretation

allows us to ignore temporal adjustements.

3 Two basic flows

3.1 Couette flow

For Couette flow, there is no net pressure drop along the channel. However, one of the

boundaries is moving. This yields the equation:

µ
∂2u

∂y2
= 0 (18)

withe boundary conditions:

u(y = 0) = 0 u(y = h) = uH (19)

The solution is that

u = uH
�y
h

�
(20)

The stress that is applied by this flow on the bottom wall is:

τxy(y = 0) = µ
∂u

∂y
= µ

uH
h

(21)

If the wall has a finite surface area A, the force applying on the wall would be F = A · τxy.
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