Micro-scale flows II- Multiphase flows

Charles N. Baroud Ecole Polytechnique, France

The bad news:

Presence of drops and bubbles introduces nonlinearities into Stokes equation

Sign of nonlinearity

Oil + surfactant

Cordero & Baroud, unpublished

Slightly different conditions

Cordero & Baroud, unpublished

Surface tension

•Two ways to think about surface tension:

Force per unit length γ = [N/m]
Energy per unit area γ = [J/m]²

Gives cohesion to liquids

Consequence

Pressure inside a bubble larger than pressure outside Pressure in a «plug» lower than outside Liquid cylinder: Pressure approach

What happens if the diameter is perturbed?

A flow takes place from P+ to P-

Rayleigh-Plateau instability

Which increases imbalance:→ Instability

Energy approach

Jet volume $V_{jet} = \pi h^2 L$

Surface area $A_{jet} = 2\pi hL$

Energy approach

Drop volume $V_{drops} = N \cdot \frac{4}{3}\pi R^3$

Surface area $A_{drops} = N \cdot 4\pi R^2$

Minimize energy

Conserve volume, compare areas $R^{3} = \frac{3L}{4N}h^{2}$

$$\frac{A_{jet}}{A_{drops}} = \frac{2R}{3h}$$

 $R^* > 3h/2.$

Surface area is reduced if:

Classic problem

 <u>Plateau</u> (1850) presented this argument and predicted «optimal wavelength» to be

$$\lambda = 2\pi h.$$

- <u>Rayleigh</u> (1879) realized that dynamics must play a role in wavelength selection of λ>λcr
- He found $\lambda = 9h$

Capillary length

Hydrostatic pressure:

Lau et al, 2003

 $P_{hs} \sim \rho g h$

Capillary pressure: $P_{cap} \sim \frac{\gamma}{h}$

$$P_{hs} = P_{cap} \Rightarrow \boxed{L_C \sim \sqrt{\frac{\gamma}{\rho g}}}$$

In micro-systems

Size always smaller than L_C

→ Gravity can always be ignored

Inertial effects can also be ignored

Viscous vs. Capillary competition

$$Ca = \frac{\mu U}{\gamma}$$

For a given fluid pair, Ca is a measure of the velocity of flow only

Multiphase flows in micro-channels

Production

Drop production

Cordero & Baroud, 2010

In microchannels

Bad news 2: Formation dynamics essentially determined by the geometry

Three classic designs are now standard

Multiphase flows in micro-channels

How do big drops flow in a microchannel?

Drop creates recirculation

 $\lambda \ll 1$

(a)

2D computations

(b) Sarrazin et al, 2006

Recirculating flows

Jensen lab, MIT, 2005

Can we use this to mix fluids?

Song et al, 2003

Chaotic mixing

Chaotic mixing (modern)

Song et al, 2003

In a plug

13 dh

Jensen lab, MIT, 2005

How fast do drops flow?

Backward flow in film pushes drop faster than mean velocity

$$\frac{V_d - V_{ext}}{V_d} \propto \mathrm{Ca}_d^{2/3}$$

(Drop goes faster than mean velocity!)

See Fairbrother & Stubbs, 1935

In a rectangular micro-channel

FIGURE 5. Cross-sections of the flow domain for two capillary numbers (Ca = 0.02, 1.0), three aspect ratios ($\alpha = 1, 3, 7$) and Bo = 0, at a distance of 3.92 α behind the tip.

deLozar et al. 2008

Drops leave a film behind them

« Bretherton » problem

$$\frac{e}{H} \propto \mathrm{Ca}_d^{2/3}.$$

Film thickness increases with increasing Capillary number

(Same physics as Landau-Levich film)

Cubaud & Ho, 2004

How fast the drops flow 2

Rectangular channels: Gutters change everything

Flux in gutters directed along Vd, so drops go slower than mean velocity

$$\frac{V_d - V_{ext}}{V_d} \propto - \operatorname{Ca}_d^{-1/3}$$

See Wong, Radke, Morris, 1995

What about in experiments?

Fuerstman et al, 2007

Detailed measurments

Kinoshita et al, 2007

Pressure profile in a 2 phase fluid flow

Divide flow into three parts:

- External fluid flow
- Internal fluid flow
- Interfaces

Flow away from interfaces

Assuming distance between plugs is large, use single phase relation:

$$\Delta P = \sum_{N} \mathcal{R}_{N} Q$$

For each plug and each drop

Effect of interfaces

Interfaces are not symmetric: Added pressures

Resistance due to caps

Front and rear caps do not have same curvature

Complementary descriptions

dimanche 3 avril 2011

38

Combine all resistances

Verify pressure-flow rate relation

Added resistance of bubble...

Surface tension-driven flows

An imbalance of surface tension leads to a flow

Surface tension-driven flows

y is a function of temperature

Put an ice cube in oil, with particles on the surface to show the flow

Thermocapillary flow

Laser heates a micro-bubble

Swimming drop

In a microchannel

Laser

Q.

NACE OF

ŧ۴

Guiding drops

Wall-less microchannels

Advanced drop operations

Individual control over each droplet

