Exercise $1 - Two flow fields$

We assume two parallel plates which extend in the (x,y) -plane and have a distance d in z-direction. In between there is a Newtonian fluid. Only linear effects are considered. We assume two flow fields and look for the shear rate as a function of the characteristic velocity.

- a) The top plate moves with a speed v_{top} . What is the speed of the fluid as a function of the zcoordinate? What is the shear rate ∂v/∂z ?
- b) Both plates rest. The speed profile of the fluid is assumed to be parabolic, according to $v(z)$ = z⋅(d-z)⋅v_{max}⋅ 4/d². What is the average speed v_{av} of the fluid? What is the shear rate at the plate surfaces as a function of the average speed v_{av} ?

Exercise $2 -$ Fourier-transformation of a lamellar structure

We assume a symmetric lamellar structure which shall be Fourier-transformed in discrete space. We use the function $\overline{\mathcal{L}}$ ∤ \int − + = 1 for 1 for *f* (*x*) The intensities are proportional to the amplitude squared, i.e. $I_n = F_n^2$. Calculate I_n and F_n ! How would the Fourier-transformation be interpreted for a continuous variable q instead of n ? How does the 3dimensional Fourier-transformed lamellar structure look like? $\leq x \leq$ $\leq x <$ $\pi \leq x \leq 2\pi$ π $\pi \leq x \leq 2$ 0 *x* $x < \pi$

x < 2π. The Fourier Integrals are $F_n = \int_0^{2\pi}$ 2^π 0 $F_n = \int_0^1 f(x) \sin(nx) dx$. **COST D43 Training school "Fluids and Solid Interfaces", Sofia, Bulgaria, 12-15 April 2011**

21 - Two flow fields

21 - Two flow fiel

Exercise 3 – reciprocal lattice of a hexagonal structure

We define three vectors to describe the structure of a hexagonal cylinder structure, which read

dimensional Fourier-transformed lamellar structure look like?
\n**Exercise 3** – **reciprocal lattice of a hexagonal structure**
\nWe define three vectors to describe the structure of a hexagonal cylinder structure, which read
\n
$$
\vec{r}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{r}_2 = \begin{pmatrix} 1/2 \\ \sqrt{3/4} \\ 0 \end{pmatrix}, \vec{r}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
$$
 In the (x,y)-plane the structure is hexagonal according to the two

vectors \vec{r}_1, \vec{r}_2 . In the z-direction the cylinders should be infinitely long.

Calculate the vectors of the reciprocal lattice, according to $\vec{g}_1 = \vec{r}_2 \times \vec{r}_3$ simplicity we leave the vectors of the reciprocal lattice not normalized. Visualize the real space and reciprocal space picture! What happens for the z-direction in reciprocal space according to the infinitely long cylinders? r r ∪
→ r → → $= \vec{r}_2 \times \vec{r}_3$ (and rotating indices). For

Exercise 4 – Scattering of Micelles (Contrast Variation)

The three symbols \Box , \bigcirc , and \triangle indicate the characteristic small angle scattering of spherical polymer micelles under different important contrast conditions. There are three conditions called: shell contrast, core contrast and zero average contrast. What do these terms specify? Which condition can be connected to which symbol (or curve)? Why?

Exercise 5 – Helfrich energies

The simplest structures for microemulsions are spherical, cylindrical droplets and the lamellar phase. Rationalize the principal curvatures c_1 and c_2 for these structures – they are the extreme curvatures for the considered geometry. The Helfrich free energy reads (assuming the equilibrium curvature c_0 being zero):

$$
F = \int dS \cdot \left(\frac{1}{2} \kappa (c_1 + c_2)^2 + \overline{\kappa} \cdot c_1 c_2\right)
$$

Since for the considered geometries, the principal curvatures are constant, the normalized free energy is even simpler, and reads:

$$
f = \frac{1}{2}\kappa (c_1 + c_2)^2 + \overline{\kappa} \cdot c_1 c_2
$$

Calculate f for the three cases!